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Abstract. We investigate the geometry of sets in Euclidean and infinite-dimensional

Hilbert spaces. We establish sufficient conditions that ensure a set of points is contained

in the image of a (1/s)-Hölder continuous map f : [0, 1] → l2, with s > 1. Our results

are motivated by and generalize the “sufficient half” of the Analyst’s Traveling Salesman

Theorem, which characterizes subsets of rectifiable curves in RN or l2 in terms of a

quadratic sum of linear approximation numbers called Jones’ beta numbers. The original

proof of the Analyst’s Traveling Salesman Theorem depends on a well-known metric

characterization of rectifiable curves from the 1920s, which is not available for higher-

dimensional curves such as Hölder curves. To overcome this obstacle, we reimagine Jones’

non-parametric proof and show how to construct parameterizations of the intermediate

approximating curves fk([0, 1]). We then find conditions in terms of tube approximations

that ensure the approximating curves converge to a Hölder curve. As an application to

the geometry of measures, we identify conditions that guarantee fractional rectifiability

of pointwise doubling measures in RN .
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1. Introduction

The ubiquitous Traveling Salesman problem [LLRKS85, GP02, ABCC06] is to find a

tour of edges on a finite graph that returns to the initial vertex and has the shortest

possible length. The Analyst’s Traveling Salesman problem [Jon90, Sch07a] is to find

a rectifiable curve that contains a finite or infinite, bounded set of points in a metric

space that has the shortest possible length. The former problem always has a solution

yet is computationally hard, while the latter problem may or may not have any solution

at all. A sophisticated example from Geometric Measure Theory of a bounded point set

that is not contained in any rectifiable curve is a Besicovitch irregular set [Bes28] (see §7
below); a trivial example is a solid square in the plane. Tests to decide which sets are

contained in a rectifiable curve have been found in R2 [Jon90], RN [Oki92], l2 [Sch07b],

the first Heisenberg group [LS16a, LS16b], Carnot groups [CLZ19, Li19], Laakso-type

spaces [DS17], and in general metric spaces [Hah05, Hah08, DS19]. Applications of Jones’

and Okikiolu’s solution of the Analyst’s TSP in RN have been given in Complex Analysis

[BJ94, Bis02, Bis11], Dynamics and Probability [BJ97, BJPP97], Geometric Measure

Theory [BS15, BS17], Harmonic Analysis [Tol03], and Metric Geometry [NP11, AS12].

Let E ⊂ RN be a nonempty set and let Q ⊂ RN be a bounded set of positive diameter

(such as a ball or a cube). Following [Jon90], the Jones beta number βE(Q) is defined by

βE(Q) := inf
`

sup
x∈E∩Q

dist(x, `)

diamQ
∈ [0, 1],

where ` ranges over all straight lines in RN , if E∩Q 6= ∅, and by βE(Q) = 0, if E∩Q = ∅.
Let ∆(RN) denote the family of dyadic cubes in RN ,

∆(RN) := {[2km1, 2
k(m1 + 1)]× · · · × [2kmN , 2

k(mN + 1)] : m1, . . . ,mN , k ∈ Z}.

Given a cube Q and a scaling factor λ > 0, we let λQ denote the concentric dilate of Q

by λ.

Analyst’s Traveling Salesman Theorem ([Jon90, Oki92]). A bounded set E ⊂ RN is

contained in a rectifiable curve Γ = f([0, 1]) if and only if

(1.1) SE :=
∑

Q∈∆(RN )

βE(3Q)2 diamQ <∞.

More precisely,

(1) If Γ is any curve containing E, then diamE + SE .N length(Γ).

(2) If SE <∞, then there exists a curve Γ ⊃ E such that length(Γ) .N diamE +SE.
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We may refer to statements (1) and (2) as the necessary half and sufficient half of the

Analyst’s Traveling Salesman theorem, respectively. The theorem is valid if the length

of a curve Γ = f([0, 1]) is interpreted either as the 1-dimensional Hausdorff measure of

the set Γ or as the total variation of the parameterization f . A curious feature of the

known proofs of the sufficient half of the Analyst’s TST (see [Jon90] or [BS17]) is that

a rectifiable curve Γ containing the set E is constructed as the limit of piecewise linear

curves Γk containing a 2−k-net for E without constructing a parameterization of Γk or Γ.

This aspect of the proof breaks the analogy with the classical TSP, in which one is asked

to find a minimal tour of a graph.

In this paper, we provide a parametric proof of the sufficient half of the Analyst’s TST,

which more closely parallels the classical TSP. Beyond its intrinsic interest, the method

that we provide is important, because it allows us to establish multiscale tests to ensure

that a bounded set of points in RN is contained in a (1/s)-Hölder continuous curve with

s ∈ (1, N). Rectifiable curves correspond precisely to the class of Lipschitz curves (s = 1).

Remarkably, in the Hölder Traveling Salesman theorem (see §§1.1 and 5), we can replace

approximation by lines in the definition of the Jones beta numbers with approximation

by thin tubes. For a self-contained statement of the “parametric” Analyst’s TST, see §6.

While our focus in this paper is primarily on sets, we are motivated by open questions

about the structure of Radon measures [BV18, Bad19]. For applications of our Hölder

Traveling Salesman theorems to fractional rectifiability of measures, see §7.

1.1. Hölder Traveling Salesman Theorem(s). A (1/s)-Hölder curve Γ in RN is the

image of a continuous map f : [0, 1]→ RN satisfying the Hölder condition,

|f(x)− f(y)| ≤ H|x− y|1/s for all x, y ∈ [0, 1],

where s ∈ [1,∞) and H is a finite constant independent of x and y. A 1-Hölder curve

is also called a Lipschitz curve or a rectifiable curve. While non-trivial rectifiable curves

always have topological dimension 1 and asymptotically resemble a unique tangent lineH1

almost everywhere, (1/s)-Hölder curves with s > 1 exhibit a variety of more complicated

behaviors. For example,

• an m-dimensional cube in RN (m ≤ N) is a (1/m)-Hölder curve;

• the von Koch snowflake is a log4(3)-Hölder curve; and,

• the standard Sierpiński carpet is a log8(3)-Hölder curve.

In fact, Remes [Rem98] proved that any compact, connected self-similar set K ⊂ RN of

Hausdorff dimension s that satisfies the open set condition is a (1/s)-Hölder curve. For

related work on space-filling curves generated by graph-directed iterated function systems,

see Rao and Zhang [RZ16].

Towards a Hölder version of the Analyst’s Traveling Salesman theorem, the first and

third authors proved in [BV18] as a test case that if s > 1, E ⊂ RN is bounded, and∑
Q∈∆(RN )

Q∩E 6=∅, sideQ≤1

(diamQ)s <∞,
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then E is contained in a (1/s)-Hölder curve. By establishing a parametric version of

Jones’ proof of the sufficient half of the Analyst’s TST, we are able to obtain the following

substantial improvement.

Theorem 1.1 (Hölder Traveling Salesman I). For all N ≥ 2 and s > 1, there exists

β0 ∈ (0, 1) such that if E ⊂ RN is bounded and

(1.2) Ss,+E :=
∑

Q∈∆(RN )
βE(3Q)≥β0

(diamQ)s <∞,

then E is contained in a (1/s)-Hölder curve. More precisely, E ⊂ Γ = f([0, 1]) for some

(1/s)-Hölder map f : [0, 1]→ RN with Hölder constant H .N,s diamE+(diamE)1−sSs,+E .

Condition (1.2) implies that at Hs almost every point, the set E asymptotically lies in

sufficiently thin tubes. Theorem 1.1 provides a sufficient test that identifies all subsets of

some well-known Hölder curves such as snowflakes of small dimension. However, because

of the richness of Hölder geometry, a condition using Jones beta numbers alone such as

(1.2) cannot be expected to hold for all subsets of every Hölder curve. Indeed (1.2) fails

when E is a carpet or a square. For expanded discussion and related examples, see §9.1.

Theorem 1.1 is a simplification of our main result, which is adapted to a nested sequence

of separated sets in a finite or infinite-dimensional Hilbert space. See Theorem 5.1.

To estimate the size of the constant β0 in Theorem 1.1, see Lemma 2.8 and Remark

5.6. The following variant of Theorem 1.1 is an immediate corollary, whose hypothesis

does not require knowledge of β0.

Corollary 1.2 (Hölder Traveling Salesman II). Suppose that N ≥ 2, s > 1, and p > 0.

If E ⊂ RN is bounded and

(1.3) Ss,pE :=
∑

Q∈∆(RN )

βE(3Q)p(diamQ)s <∞,

then E is contained in a (1/s)-Hölder curve. More precisely, E ⊂ Γ = f([0, 1]) for some

(1/s)-Hölder map f : [0, 1]→ RN with Hölder constant

H .N,s diamE + β−p0 (diamE)1−sSs,pE ,

where β0 is the constant appearing in Theorem 1.1.

A good exercise is to prove that any bounded set E in RN satisfying condition (1.3)

with s > 1 has zero s-dimensional Hausdorff measure. In §9.3, we construct a countable,

compact set E (hence Hs(E) = 0) such that E is not contained in any (1/s)-Hölder curve

with 1 ≤ s < N . Thus, Corollary 1.2 is nonvacuous.

1.2. Overview of the proof of Theorem 1.1. In order to properly discuss the proof

of Theorem 1.1, we quickly sketch the proof of the sufficient half of the Analyst’s TST.

The proof splits into three steps. In the first step, one uses the Jones beta numbers

βE(3Q) (in particular, whether they are large or small) to construct a sequence of finite,
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connected graphs Gk in RN with straight edges that converge in the Hausdorff distance

to a compact, connected set G containing E. Each graph Gk is obtained by refining Gk−1

and resembles a flat arc near points of E that look flat at scale 2−k. In step two, one uses

the structure of the graphs Gk and the Pythagorean theorem to prove the existence of a

constant C > 0 such that

(1.4) H1(Gk+1) ≤ H1(Gk) + C
∑

Q∈∆(RN )

sideQ'2−k

βE(3Q)2 diamQ.

Condition (1.1) and Go la̧b’s semicontinuity theorem (e.g. see [AO17]) ensure thatH1(G) ≤
lim infk→∞H1(Gk) <∞. Thus, the first two parts of the proof yield a compact, connected

set G containing E with H1(G) < ∞. The final step is to invoke Ważewski’s theorem

to conclude existence of a Lipschitz parameterization for G: if G ⊂ RN is connected,

compact, and H1(G) < ∞, then there exists a Lipschitz map f : [0, 1] → RN such that

G = f([0, 1]) (see [AO17, Theorem 4.4] or [Sch07b, Lemma 3.7]). Note that the condition

H1(G) <∞ promotes connectedness of G to local connectedness (because G is a curve).

In the Hölder setting, there are at least two obstacles to following the approach above.

First and foremost, a naive analogue of Ważewski’s theorem cannot hold for Hölder maps,

since the condition Hs(G) < ∞ does not imply a continuum is locally connected when

s > 1 (e.g. the topologist’s comb). What is more, even if G is assumed to be an Ahlfors

s-regular curve with finite Hs measure, we cannot conclude that G is a (1/s)-Hölder

curve; we provide examples in §9.2 using a theorem of Mart́ın and Mattila [MM00].

Another obstacle is the well-known failure of Go la̧b’s semicontinuity theorem for Hausdorff

measures Hs with s > 1. Thus, in a proof of a Hölder Traveling Salesman theorem,

estimating the Hausdorff measure of approximating sets has no direct use.

To overcome these obstacles, we reimagine the proof of the Analyst’s TST, and in §3,

give a procedure to construct a sequence of partitions {Ik}k≥0 of [0, 1] and a sequence of

piecewise linear maps {fk : [0, 1]→ RN}k≥0 that parameterize approximating graphs Gk.

Each map fk is built by carefully refining fk−1 to ensure that ‖fk − fk−1‖∞ . 2−k. This

guarantees that the maps fk have a uniform limit f whose image contains the Hausdorff

limit of Gk (and hence E). To prove that f is Hölder continuous, one must estimate

growth of the Lipschitz constants of the maps fk (see Appendix B for the basic method).

In §4, we introduce a notion of mass of intervals I ∈ Ik, defined using the s-power of

diameters of images fl(J) of intervals J ⊂ I, l ≥ k. This lets us record estimates in the

domain of the map rather than its image, and in §4, we provide a mass-centric analogue

of (1.4) that is adapted to the Hölder setting. In turn, this lets us estimate the Lipschitz

constants of the maps fk and complete the proof of the Hölder Traveling Salesman theorem

in §5. For completeness, we use our method to reprove and strengthen the sufficient half

of the Analyst’s TST in §6.

1.3. Ważewski type theorem for flat continua. The Hahn-Mazurkiewicz Theorem

(e.g. see [HY88, Theorem 3.30]) asserts that a set E ⊂ RN is a continuous image of [0, 1]
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if and only if E is compact, connected, and locally connected. The Ważewski Theorem

(for an attribution, see [AO17]) asserts that E ⊂ RN is a Lipschitz image of [0, 1] if and

only if E is compact, connected, and H1(E) < ∞. It is an easy exercise to check that

every (1/s)-Hölder continuous image of [0, 1] is compact, connected, locally connected,

and has Hs(E) <∞, but the converse fails when s > 1 (see §9.2 below). This motivates

the following, apparently open question: Is there a metric, geometric, and/or topological

characterization of Hölder curves in RN?

The method of proof of the Hölder Traveling Salesman theorems leads to the following

Ważewski type theorem for flat continua. For the proof of Proposition 1.3, see §8. A set

E ⊂ Rn is called Ahlfors s-regular if there exist 0 < c ≤ C <∞ such that

(1.5) crs ≤ Hs(E ∩B(x, r)) ≤ Crs for all x ∈ E and 0 < r ≤ diamE.

We say that E is lower (upper) Ahlfors s-regular if the first (second) inequality in (1.5)

holds for all x ∈ E and 0 < r ≤ diamE.

Proposition 1.3. There exists a constant β1 ∈ (0, 1) such that if s > 1 and E ⊂ RN is

compact, connected, Hs(E) <∞, E is lower Ahlfors s-regular with constant c, and

(1.6) βE
(
B(x, r)

)
≤ β1 for all x ∈ E and 0 < r ≤ diamE,

then E = f([0, 1]) for some injective (1/s)-Hölder continuous map f : [0, 1] → RN with

Hölder constant H .s c−1Hs(E)(diamE)1−s.

Inclusion of lower Ahlfors regularity in the hypothesis of Proposition 1.3 is justifiable,

because it holds automatically when s = 1, i.e. every non-trivial connected set is lower

Ahlfors 1-regular. When s > 1, a non-trivial (1/s)-Hölder curve is not necessarily lower

Ahlfors s-regular, and, in fact, could have zero Hs measure. Nevertheless, Mart́ın and

Mattila [MM93] proved that if Γ is a (1/s)-Hölder curve in RN with Hs(Γ) > 0, then

lim inf
r↓0

Hs(Γ ∩B(x, r))

rs
> 0 at Hs-a.e. x ∈ Γ.

Even if it can be weakened, the lower regularity hypothesis in Proposition 1.3 cannot be

completely dropped: In §9.4, for any s > 1 and β1 ∈ (0, 1), we find a curve E ⊂ RN with

Hs(E) <∞ satisfying (1.6) such that E is not contained in a (1/s)-Hölder curve.

Sharp estimates on the Minkowski dimension of sets satisfying (1.6) were provided by

Mattila and Vuorinen [MV90]; for generalized Mattila-Vuorinen type sets, see [BL15].

1.4. Related Work. As noted above, one motivation for this paper is to develop tools

to analyze the structure of Radon measures. See §7 for background and for an application

of Corollary 1.2 to the fractional rectifiability of measures.

There is considerable interest in finding higher-dimensional analogues of the Analyst’s

Traveling Salesman theorem, for example finding a characterization of subsets of Lipschitz

images of [0, 1]2. This problem is still open, but some positive steps were recently taken

by Azzam and Schul [AS18] for Hausdorff content lower regular sets. Also see [Vil18].
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Part I. Proof of the Hölder Traveling Salesman Theorem

In the first part of the paper, §§2–6, we establish several Hölder Traveling Salesman

theorems, including Theorem 1.1 and Theorem 5.1. To start, in §2, we introduce notation

and essential concepts used in the proof, including nets, flat pairs, and variation excess.

In §3, we present a refined version of Jones’ Traveling Salesman construction, which takes

a nested sequence (Vk)
∞
k=0 of ρkr0-separated sets, approximating lines {`k,v : v ∈ Vk}∞k=0,

and associated errors {αk,v : v ∈ Vk}∞k=0 and outputs a sequence of partitions Ik of [0, 1]

and piecewise linear maps fk such that fk([0, 1]) ⊃ Vk. In §4, we define and estimate a

discrete s-variation of the maps fk, which is adapted to the partitions Ik of the domain.

When s > 1, the total s-mass Ms([0, 1]) associated to the sequence of maps fk fills the

role that 1-dimensional Hausdorff measure H1 plays in Jones’ proof of the Analyst’s TST.

In §5, we use the algorithm of §3 and the mass estimates of §4 to prove our main theorem

(see Theorem 5.1). Finally, in §6, we use our method to obtain a stronger version of the

sufficient half of the Analyst’s Traveling Salesman theorem. The construction presented

below can be carried out in any finite or infinite-dimensional Hilbert space.

2. Preliminaries

Given numbers x, y ≥ 0 and parameters a1, . . . , an, we may write x .a1,...,an y if there

exists a positive and finite constant C depending on at most a1, . . . , an such that x ≤ Cy.

We write x 'a1,...,an y to denote x .a1,...,an y and y .a1,...,an x. Similarly, we write x . y

or x ' y to denote that the implicit constants are universal.

2.1. Ordering flat sets. The following lemma shows that if a discrete set is sufficiently

flat at the scale of separation, then there exists a natural linear ordering of its points.

Estimates (2.1) and (2.2) are consequences of the Pythagorean theorem.

Lemma 2.1 ([BS17, Lemma 8.3]). Suppose that V ⊂ RN is a 1-separated set with

card(V ) ≥ 2 and there exist lines `1 and `2 and a number α ∈ (0, 1/16] such that

dist(v, `i) ≤ α for all v ∈ V and i = 1, 2.

Let πi denote the orthogonal projection onto `i. There exist compatible identifications of

`1 and `2 with R such that π1(v) ≤ π1(v′) if and only if π2(v) ≤ π2(v′) for all v, v′ ∈ V .

If v1 and v2 are consecutive points in V relative to the ordering of π1(V ), then

(2.1) H1([u1, u2]) ≤ (1 + 3α2) · H1([π1(u1), π1(u2)]) for all [u1, u2] ⊆ [v1, v2].

Moreover,

(2.2) H1([y1, y2]) ≤ (1 + 12α2) · H1([π1(y1), π1(y2)]) for all [y1, y2] ⊆ `2.
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Suppose that V , `1, and π1 are given as in Lemma 2.1 and let v, v1, v2 ∈ V . Given

an orientation of ` (that is, an identification of `1 with R), we say v1 is to the left of

v2 and v2 is to the right of v1 if π1(v1) < π1(v2). We say v is between v1 and v2 if

π1(v1) ≤ π1(v) ≤ π1(v2) or π1(v2) ≤ π1(v) ≤ π1(v1).

Lemma 2.2. Suppose that V ⊂ RN is a δ-separated set with card(V ) ≥ 2 and there exists

a line ` and a number α ∈ (0, 1/16] such that

dist(v, `) ≤ αδ for all v ∈ V .

Enumerate V = {v1, . . . , vn} so that vi+1 is to the right of vi for all 1 ≤ i ≤ n− 1. Then

(2.3)
n−1∑
i=1

|vi+1 − vi|s ≤ (1 + 3α2)s|v1 − vn|s for all s ≥ 1.

Moreover, if card(V ) ≥ 3, then

(2.4)
n−1∑
i=1

|vi+1 − vi|s ≤ ((1 + 3α2)|v1 − vn| − δ)s + δs for all s ≥ 1.

Proof. Let π denote the orthogonal projection onto ` and put xi := π(vi). Then

|xi+1 − xi| ≤ |vi+1 − vi| ≤ (1 + 3α2)|xi+1 − xi| for all 1 ≤ i ≤ n− 1,

where the first inequality holds since projections are 1-Lipschitz and the second inequality

holds by Lemma 2.1. Assume s ≥ 1 and card(V ) ≥ 3. Then

n−1∑
i=1

|vi+1 − vi|s

(1 + 3α2)s
≤

(
n−2∑
i=1

|xi+1 − xi|s
)

+ |xn − xn−1|s

≤

(
n−2∑
i=1

|xi+1 − xi|

)s

+ |xn − xn−1|s

= (|xn − x1| − |xn − xn−1|)s + |xn − xn−1|s

≤
(
|xn − x1| −

δ

1 + 3α2

)s
+

(
δ

1 + 3α2

)s
≤
(
|vn − v1| −

δ

1 + 3α2

)s
+

(
δ

1 + 3α2

)s
,

where the penultimate inequality holds because for any M > 0, ε ∈ (0,M), and s ≥ 1,

the function f(t) = ts + (M − t)s defined on [ε,M − ε] attains its maximum at t = ε. This

establishes (2.4). Inequality (2.3) follows from a similar (and easier) computation. �

2.2. Nets, flat pairs, and variation excess. Let (X, | · |) denote the Hilbert space

l2(R) of square summable sequences or the Euclidean space RN for some N ≥ 2.

Let V = {(Vk, ρk)}k≥0 be a sequence of pairs of nonempty finite sets Vk in X and

numbers ρk > 0. Assume that there exist x0 ∈ X, r0 > 0, C∗ ≥ 1, and 0 < ξ1 ≤ ξ2 < 1

such that V satisfies the following properties.
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(V0) When k = 0, we have ρ0 = 1. For all k ≥ 0, we have ξ1ρk ≤ ρk+1 ≤ ξ2ρk.

(V1) When k = 0, we have V0 ⊂ B(x0, C
∗r0).

(V2) For all k ≥ 0, we have Vk ⊂ Vk+1.

(V3) For all k ≥ 0 and all distinct v, v′ ∈ Vk, we have |v − v′| ≥ ρkr0.

(V4) For all k ≥ 0 and all v ∈ Vk+1, there exists v′ ∈ Vk such that |v − v′| < C∗ρk+1r0.

With C∗ and ξ2 given, define the associated parameter

A∗ :=
C∗

1− ξ2

> C∗.

In addition to (V0)–(V4), assume that for each k ≥ 0 and v ∈ Vk we are given a number

αk,v ≥ 0 and a straight line `k,v in X such that

(V5) sup
x∈Vk+1∩B(v,30A∗ρkr0)

dist(x, `k,v) ≤ αk,vρk+1r0.

We call the line `k,v an approximating line at (k, v).

The formulation of (V5) is motivated by [BS17, Proposition 3.6]. We remark that the

number ρk+1r0 appearing on the right hand side of (V5) is the scale of separation of points

in Vk+1. While we allow X = l2(R), each Vk can be identified with a subset of RNk for

some increasing sequence Nk if convenient, because each Vk is finite and Vk ⊂ Vk+1.

Lemma 2.3. Let v ∈ Vk be such that αk,v ≤ 1/16 and fix an orientation for `k,v.

(1) If v′ ∈ Vk∩B(v, 14A∗ρkr0) is the first point to the right of v, then there exist fewer

than 2 + 2.2C∗ points of Vk+1 between v and v′ (inclusive).

(2) There exist fewer than 1.1C∗ points of Vk+1 ∩B(v, C∗ρk+1r0) to the right of v.

Proof. The points in Vk+1 ∩B(v, 30A∗ρkr0) are ρk+1r0-separated and are linearly ordered

by Lemma 2.1. Let v′ be the first point in Vk ∩ B(v, 14A∗ρkr0) to the right of v and

let w1, . . . , wm denote the points in Vk+1 that lie between v and v′ (inclusive). By (V4),

each point wi belongs to B(v, C∗ρk+1r0)∪B(v′, C∗ρk+1r0). Let πk,v denote the orthogonal

projection onto `k,v. By (V3) and (2.1), 1.1|π(wi) − π(wj)| > |wi − wj| ≥ ρk+1r0 for

all distinct i, j, since (1 + 3(1/16)2) < 1.1. It follows that there are fewer than 1.1C∗

points wi in Vk+1 ∩ B(v, C∗ρk+1r0) to the right of v and fewer than 1.1C∗ points wi in

Vk+1 ∩B(v′, C∗ρk+1r0) to the left of v′. The first claim follows. A similar argument gives

the second claim. �

Definition 2.4 (flat pairs). Fix a parameter α0 ∈ (0, 1/16]. For all k ≥ 0, define Flat(k)

to be the set of pairs (v, v′) ∈ Vk × Vk such that

(1) ρkr0 ≤ |v − v′| < 14A∗ρkr0,

(2) αk,v < α0 and v′ is the first point in Vk ∩B(v, 14A∗ρkr0) to the left or to the right

of v with respect to ordering induced by `k,v.

Define the corresponding set of geometric line segments Lk = {[v, v′] : (v, v′) ∈ Flat(k)}.

Note that the collection Flat(k) of flat pairs is not symmetric in the sense that (v, v′) ∈
Flat(k) does imply (v′, v) ∈ Flat(k), because αk,v does not control αk,v′ .
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Lemma 2.5. Let e1, e2, e3 be distinct elements of Lk for some k ≥ 0.

(1) Edges e1 and e2 intersect at most in a common endpoint.

(2) Edges e1, e2 and e3 do not have a common point.

Proof. Let e1 = [v1, v
′
1], e2 = [v2, v

′
2], and e3 = [v3, v

′
3] represent distinct elements of

Lk, where (vi, v
′
i) ∈ Flat(k) for all i ∈ {1, 2, 3}. If two or more of the edges intersect in a

common point, say {ei : i ∈ I0} for some I0 ⊂ {1, 2, 3} with card(I0) ≥ 2, then those edges

are contained in B(vj, 30A∗ρkr0) for each j ∈ I0, since each edge has diameter at most

14A∗ρkr0. Note that Vk is a ρkr0 separated set, dist(vi, `k,vj) ≤ αk,vjρk+1r0 < αk,vjρkr0

for all i, j ∈ I0, and αk,vj ≤ 1/16. Thus, by Lemma 2.1, the vertices {vi, v′i : i ∈ I0}
are consistently linearly ordered according to their projections onto `k,vj for each j ∈ I0.

Claims (1) and (2) follow immediately, since the segments in Lk emanating from a vertex

v ∈ Vk with αk,v < α0 are only drawn to the first vertex in Vk ∩B(v, 14A∗ρkr0) to the left

or right of v with respect to the projection onto `k,v. �

Given a pair (v, v′) ∈ Flat(k), let Vk+1(v, v′) denote the set of all points x ∈ Vk+1 ∩
B(v, 14A∗ρkr0) such that x lies between v and v′ (including v and v′).

Definition 2.6 (variation excess). For all s ≥ 1, for all k ≥ 0, and for all (v, v′) ∈ Flat(k),

define the s-variation excess τs(k, v, v
′) by

τs(k, v, v
′)|v − v′|s = max

{(
n−1∑
i=1

|vi+1 − vi|s
)
− |v − v′|s, 0

}
,

where Vk+1(v, v′) = {v1, . . . , vn} with v1 = v, vn = v′, and vi+1 is the first point to the

right (or left) of vi for all 1 ≤ i ≤ n− 1.

Lemma 2.7. For all k ≥ 0 and (v, v′) ∈ Flat(k), we have τ1(k, v, v′) ≤ 3α2
k,v.

Proof. Let Vk+1(v, v′) = {v1, . . . , vn}, where v1 = v, vn = v′, and vi+1 is to the right of vi
for all 1 ≤ i ≤ n− 1. By Lemma 2.2, with s = 1,

n−1∑
i=1

|vi+1 − vi| ≤ (1 + 3α2
k,v)|vn − v1| = (1 + 3α2

k,v)|v − v′|.

Rearranging the inequality gives τ1(k, v, v′) ≤ 3α2
k,v. �

We now demonstrate that when s > 1, the variation excess τs(k, v, v
′) is zero whenever

the set Vk+1(v, v′) lies in a sufficiently thin tube.

Lemma 2.8 (tube control). For all s > 1, there exists εs,C∗,ξ1,ξ2 ∈ (0, 1/16] such that if

αk,v ≤ εs,C∗,ξ1,ξ2, then τs(k, v, v
′) = 0 for all (v, v′) ∈ Flat(k).

Proof. Let (v, v′) ∈ Flat(k) and enumerate Vk+1(v, v′) = {v1, . . . , vn} so that v1 = v,

vn = v′, and vi+1 is to the right of vi for all 1 ≤ i ≤ n−1. If n = 2, then
∑n−1

i=1 |vi+1−vi|s =
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|v − v′|s. Thus, suppose that n ≥ 3. By Lemma 2.2, with δ = ρk+1r0 and α = αk,v,

n−1∑
i=1

|vi+1 − vi|s ≤ |v − v′|s
[(

(1 + 3α2
k,v)−

ρk+1r0

|v − v′|

)s
+

(
ρk+1r0

|v − v′|

)s]
≤ |v − v′|s

[(
(1 + 3α2

k,v)−
ξ1

14A∗

)s
+

(
ξ1

14A∗

)s]
=: Aαk,v

|v − v′|s,

because ξ−1
2 ρk+1r0 ≤ |v − v′| ≤ 14A∗ξ−1

1 ρk+1r0 and the function

f(t) = ((1 + 3α2
k,v)− t)s + ts on [ξ1/14A∗, ξ2]

takes its maximum at t = ξ1/14A∗. Since s > 1, the coefficient

Aε →
(

1− ξ1

14A∗

)s
+

(
ξ1

14A∗

)s
< 1 as ε→ 0.

Thus, by continuity, there exists ε′ > 0 such that Aε′ = 1. Let εs,C∗,ξ1,ξ2 = min{ε′, 1/16}.
Then

∑n−1
i=1 |vi+1 − vi|s ≤ |v − v′|s whenever αk,v ≤ εs,C∗,ξ1 . �

3. Traveling Salesman algorithm

For the rest of §§3 and 4, let X denote the Hilbert space l2(R) or RN , let (Vk)k≥0 be

a sequence of sets in X and let ρk > 0 be a sequence of numbers satisfying (V0)–(V5)

defined in §2.2. In addition, fix the parameter α0 ∈ (0, 1/16] in Definition 2.4. For each

integer k ≥ 0, we will construct

(1) two collections of pairwise disjoint, open intervals in [0, 1] denoted by Bk (called

“bridge intervals”) and Ek (“edge intervals”),

(2) two collections of pairwise disjoint, nondegenerate closed intervals in [0, 1] denoted

by Fk (“frozen point intervals”) and Nk (“non-frozen point intervals”), and

(3) a continuous map fk : [0, 1]→ X

that satisfy the following properties.

(P1) The four collections Bk, Ek, Fk, Nk are mutually disjoint and for any x ∈ [0, 1]

there exists unique interval I contained in their union such that x ∈ I.

(P2) The map fk|I is affine on each I ∈ Ek ∪Bk and the map fk|J is constant on each

J ∈ Fk ∪Nk.

(P3) For all I ∈ Ek, we have diam fk(I) < 14A∗ρkr0.

(P4) The map fk|
⋃

Ek is 2-to-1; that is, for every x ∈
⋃

Ek there exists a unique

x′ ∈
⋃

Ek \ {x} such that fk(x) = fk(x
′).

(P5) If (v, v′) ∈ Flat(k), then there exists I ∈ Ek such that fk(I) joins v with v′.

Conversely, if a and b are endpoints of an interval I ∈ Ek and αk,fk(a) < α0, then

(fk(a), fk(b)) ∈ Flat(k).

(P6) For each I ∈ Fk ∪Nk, the image fk(I) ∈ Vk and for each v ∈ Vk there exists a

unique I ∈ Nk such that fk(I) = v.

(P7) If J ∈ Nk is such that fk(J) is an endpoint of fk(I) for some I ∈ Ek, then there

exists I ′ ∈ Ek (possibly I ′ = I) such that fk(I
′) = fk(I) and J ∩ I ′ 6= ∅.
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Lemma 3.1. Assume (P5) holds at stage k ≥ 0. Let a < b < a′ < b′ be such that (a, b)

and (a′, b′) belong to Ek, fk(b) = fk(a
′), and αk,fk(b) ≤ α0. Then either

(1) fk((a, b)) = fk((a
′, b′)) or

(2) fk(b) lies between fk(a) and fk(b
′) with respect to order induced by `k,fk(b).

Proof. This is an immediate consequence of (P5) and Lemma 2.5. �

In §3.1, we construct E0, B0, N0, F0, and f0. In §3.2, we formulate the inductive

hypothesis. We construct the collections of intervals Ek+1, Bk+1, Nk+1, Fk+1, and fk+1

in §§3.3–3.8. We verify properties (P1)–(P7) in §3.9. Finally, in §3.10, we review choices

in all choices of the algorithm.

3.1. Step 0. Fix a point v0 ∈ V0. Let G0 be the (not necessarily connected) graph with

vertices V0 and edges L0. Suppose that G0 has components G
(1)
0 , . . . , G

(l)
0 with v0 ∈ G(1)

0 .

Case 1. Suppose that V0 = {v0}. Then set E0 = ∅, B0 = ∅, N0 = {[0, 1]} and F0 = ∅.
Define also f0 : [0, 1] → X with f0(x) = v0 for all x ∈ [0, 1]. Note that properties

(P1)–(P7) are trivial in this case.

Case 2. Suppose that card(V0) ≥ 2 and that l = 1, that is, G0 is connected. We apply

Proposition A.1 for v0 with ∆ = [0, 1], G = G0 and we obtain a collection of intervals I
and a continuous map g. By Lemma 2.5, each point v ∈ V0 has valence at most 2 in G0

and there exists a component Jv of g−1(v) such that if e is an edge of G0 that contains v

as an endpoint, then e has a preimage I ∈ I such that I ∩Jv 6= ∅. Let N be the collection

of all such intervals Jv.

Set E0 = I, B0 = ∅, N0 = N , define F0 to be the components of [0, 1]\
⋃

(E0∪B0∪N0),

and let f0 = g. Properties (P1)–(P7) follow from Proposition A.1.

Case 3. Suppose that card(V0) ≥ 2 and that l ≥ 2, that is, G0 is disconnected.

For each j = 2, . . . , l fix a vertex uj of G
(j)
0 . Let {I1, . . . , I2l−2} be a collection of open

intervals, enumerated according to the orientation of [0, 1], such that their closures are

mutually disjoint and are contained in the interior of [0, 1]. Let also {J1, . . . , J2l−1} be

the components of I \
⋃2l−2
j=1 Ij enumerated according to the orientation of [0, 1]. Applying

Proposition A.1 for G = G
(1)
0 , v0 and ∆ = J1, we obtain a family of open intervals I1, a

map g1 : J1 → G
(1)
0 and a family N1 of closed intervals. Similarly, for each j = 2, . . . , l,

applying Proposition A.1 for G = G
(j)
0 , uj and ∆ = J2j, we obtain a family of open

intervals Ij, a map gj : J2j → G
(j)
0 and a family Nj of closed intervals. There exists a

continuous map g : [0, 1]→ X that extends the maps gj such that

(1) g(J2j+1) = v0 for each j ∈ {1, . . . , l − 1};
(2) g|Ij is affine for each j ∈ {1, . . . , 2l − 2} and g(I2j−1) = g(I2j) = [uj, v0] for each

j ∈ {1, . . . , l − 1}.
Set E0 =

⋃l
j=1 Ij, B0 = {I1, . . . , I2l−2}, N0 =

⋃l
j=1Nj, define F0 to be the components

of [0, 1] \
⋃

(E0 ∪ B0 ∪ N0), and let f0|[0, 1] = g. Properties (P1)–(P7) follow from

Proposition A.1.
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3.2. Inductive hypothesis. Suppose that for some k ≥ 0 we have defined collections

Bk, Ek of open intervals in [0, 1], collections Fk, Nk of nondegenerate closed intervals in

[0, 1], and a continuous map fk : [0, 1]→ X, which satisfy properties (P1)–(P7).

We will define a new map fk+1 : [0, 1]→ X and new collections Bk+1,Ek+1,Fk+1,Nk+1,

Bk+1 =
⋃

I∈Bk∪Ek∪Fk∪Nk

Bk+1(I), Ek+1 =
⋃

I∈Bk∪Ek∪Fk∪Nk

Ek+1(I),

Fk+1 =
⋃

I∈Bk∪Ek∪Fk∪Nk

Fk+1(I), Nk+1 =
⋃

I∈Bk∪Ek∪Fk∪Nk

Nk+1(I),

where Bk+1(I), Ek+1(I), Fk+1(I), Nk+1(I) are collections of intervals in I that we define

below. In particular:

• In §3.3, we define the four collections and fk+1|I for I ∈ Bk.

• In §3.4 and §3.5, we define the four collections and fk+1|I for I ∈ Ek.
• In §3.6, we define the four collections and fk+1|I for I ∈ Fk.

• In §3.7 and §3.8, we the four collections and fk+1|I for I ∈ Nk.

3.3. Step k + 1: intervals in Bk. For any I ∈ Bk we set Bk+1(I) = {I}, Ek+1(I) = ∅,
Fk+1(I) = ∅, Nk+1(I) = ∅, and we define fk+1|I = fk|I. In other words, bridge intervals

are frozen and we make no changes on them.

3.4. Step k+1: intervals in Ek with a at least one endpoint with flat image. Here

we consider those intervals I = (aI , bI) ∈ Ek such that one of the αk,fk(aI), αk,fk(bI) is less

than α0. If no such interval exists, we move to §3.5. Assume now that such intervals exist.

By (P4) and the induction step, such intervals come in pairs {I, I ′} where fk(I) = fk(I
′)

and fk(I)∩ fk(J) = ∅ for all J ∈ Ek \ {I, I ′}. Fix now such a pair {I, I ′}. We choose one

of the two intervals I, I ′ to start with, say I.

Without loss of generality, assume that αk,fk(aI) < α0. Let ` be the approximating line

for (k, fk(aI)), oriented so that fk(aI) lies to the left of fk(bI). Let Vk+1,I denote the

points in Vk+1 ∩B(fk(aI), 14A∗ρkr0) that lie between fk(aI) and fk(bI) with respect to `,

including fk(aI) and fk(bI). Enumerate Vk+1,I from left to right,

Vk+1,I = {v1, . . . , vl}.

That is, vi lies to the left of vi+1 for all i ∈ {1, . . . , l − 1}, v1 = fk(aI), and vl = fk(bI).

Remark 3.2. By Lemma 2.3, we have that l < 2 + 2.2C∗.

Let {I1, . . . , Il−1} be a collection of open intervals in I with mutually disjoint closures,

enumerated according to the orientation of [0, 1] so that the left endpoint of I1 coincides

with aI and the right endpoint of Il−1 coincides with bI . Let Nk+1(I) be the components

of [0, 1] \
⋃l−1
i=1 Ii and Fk+1(I) = ∅. Define

Ek+1(I) = {Ii : |vi − vi+1| < 14A∗ρk+1r0},
Bk+1(I) = {Ii : |vi − vi+1| ≥ 14A∗ρk+1r0}.

Then define fk+1|I continuously so that
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Figure 1. The image of fk+1(I): black arrows denote images of intervals

in Ek ∪Bk, green arrows denote images of intervals in Ek+1, and red arrows

denote images of intervals in Bk+1.

(1) fk+1 is affine on each J ∈ Ek+1(I) ∪Bk+1(I) and constant on each J ∈ Nk+1(I) ∪
Fk+1(I);

(2) for each j = 1, . . . , l− 1, fk+1(Ij) = [vj, vj+1] mapping the left endpoint of Ij onto

vj and the right endpoint of Ij onto vj+1.

See Figure 1 for the image of fk+1(I).

Once we have defined the four families and fk+1 for I, we work as follows for I ′. First

note that Vk+1,I = Vk+1,I′ . Define ψI′,I : I ′ → I to be the unique orientation-reversing

linear map between I ′ and I. Define

Ek+1(I ′) = {ψI′,I(J) : J ∈ Ek+1(I)} and Bk+1(I ′) = {ψI′,I(J) : J ∈ Bk+1(I)}

This time, however, we set Fk+1(I ′) to be the components of I ′\
⋃l−1
i=1 I

′
i and Nk+1(I ′) = ∅.

Define also fk+1|I ′ continuously so that fk+1|I ′ = (fk+1|I) ◦ ψI′,I .

Lemma 3.3. For i = 1, 2, let Ii ∈ Ek be an interval with at least endpoint having flat

image and let I ′i ∈ Ek+1(Ii). If fk(I1) 6= fk(I2), then fk+1(I ′1) ∩ fk+1(I ′2) = ∅.

Proof. Suppose that I ′1 ∈ Ek+1(I1), I ′2 ∈ Ek+1(I2), and fk+1(I ′1) ∩ fk+1(I ′2) 6= ∅. Because

fk+1(I ′1) and fk+1(I ′2) do not include their endpoints (since intervals in Ek+1 are open), we

conclude that fk+1(I ′1) = fk+1(I ′2) by Lemma 2.5. Now, the endpoints of the four intervals

fk(I1), fk(I2), fk+1(I ′1), and fk+1(I ′2) lie in the 30A∗ρkr0 neighborhood of any flat endpoint

of fk(I1) or fk(I2). In particular, the endpoints of the four intervals are linearly ordered

by Lemma 2.1, and the endpoints of fk+1(I ′i) lie between the endpoints of fk(Ii) by the

construction of Ek+1(Ii). Because fk+1(I ′1) = fk+1(I ′2), this forces fk(I1) = fk(I2). �

3.5. Step k + 1: intervals in Ek with no endpoints with flat image. Suppose that

I = (aI , bI) ∈ Ek is such that αk,fk(aI) ≥ α0 and αk,fk(bI) ≥ α0. Then set Ek+1(I) = ∅,
Bk+1(I) = {I}, Nk+1(I) = ∅, Fk+1(I) = ∅, and fk+1|I = fk|I. In other words, edge

intervals with no endpoints with flat image become bridge intervals and remain bridge

intervals for the rest of the construction.

3.6. Step k + 1: intervals in Fk. For any I ∈ Fk we set Ek+1(I) = ∅, Bk+1(I) = ∅,
Fk+1(I) = {I}, Nk+1(I) = ∅ and we set fk+1|I = fk|I. In other words, frozen point

intervals in Fk remain frozen for the rest of the construction.
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3.7. Step k + 1: intervals in Nk with flat image. We now consider the intervals

I ∈ Nk for which αk,fk(I) < α0. If no such interval exists we proceed to §3.8. Assume now

that such intervals exist. Let I be such an interval and let ` be the approximating line

for (k, fk(I)). We consider three cases.

3.7.1. Non-terminal vertices. Suppose that there exist distinct v, v′ ∈ Vk \ {fk(I)} such

that (fk(I), v) and (fk(I), v′) are in Flat(k). By (P5), Lemma 3.1 and the induction step,

there exist J, J ′ ∈ Ek such that fk(I) and v are the endpoints of fk(J), while fk(I) and v′

are the endpoints of fk(J
′). Hence, all points of Vk+1 between v and v′ are contained in

the image of fk+1(J ∪ J ′) defined in §3.4. Set Ek+1(I) = ∅, Bk+1(I) = ∅, Nk+1(I) = {I},
Fk+1(I) = ∅ and fk+1|I = fk|I.

3.7.2. 1-sided terminal vertices. Suppose that there exists unique v ∈ Vk \ {fk(I)} such

that (fk(I), v) ∈ Flat(k). Fix an orientation for ` so that v lies to the left of fk(I). As

in §3.7.1, the points of Vk+1 that lie between fk(I) and v are all contained in fk+1(J)

for some J ∈ Ek. Let Vk+1,I denote the set that includes fk(I) and all points in Vk+1 ∩
B(fk(I), C∗ρk+1r0) that lie to the right of fk(I). Enumerate Vk+1,I = {v1, . . . , vl} from

left to right. That is, v1 = fk(I) and vl is the rightmost point of Vk+1,I

Remark 3.4. cardVk+1,I ≤ 1 + 1.1C∗ by Lemma 2.3.

If Vk+1,I = {fk(I)}, then set Ek+1(I) = ∅, Bk+1(I) = ∅, Nk+1(I) = {I}, Fk+1(I) = ∅
and fk+1|I = fk|I.

If Vk+1,I 6= {fk(I)}, then let Gk+1,I be the graph with vertices the points in Vk+1,I and

edges the segments {[v1, v2], . . . , [vl−1, vl]}. That is, Gk+1,I forms a simple polygonal arc

to the right of fk(I) joining fk(I) with vl. Let I and g be the collection and map given

by Proposition A.1 for ∆ = I, G = Gk+1,I and v = fk(I). For each v′ ∈ Vk+1,I fix a

component of I \
⋃

Ik+1(I) that is mapped onto v′ and let N be the collection of these

components. Set Ek+1(I) = I, Bk+1(I) = ∅, Nk+1(I) = N , and define Fk+1(I) to be the

set of components of I \
⋃

(Ek+1(I) ∪Bk+1(I) ∪Nk+1(I)). Set fk+1|I = g. See the left

half of Figure 2 for the image of fk+1(I).

3.7.3. 2-sided terminal vertices. Suppose that there exists no point in Vk \ {fk(I)} such

that (fk(I), v) ∈ Flat(k). That is, Vk ∩B(fk(I), 14A∗ρkr0) = {fk(I)}. Set

Vk+1,I = Vk+1 ∩B(fk(I), C∗ρk+1r0).

Fix an orientation for ` and enumerate Vk+1,I = {v1, . . . , vl} from left to right.

Remark 3.5. card(Vk+1,I) ≤ 1 + 2.2C∗ by Lemma 2.3.

If Vk+1,I = {fk(I)}, then set Ek+1(I) = ∅, Bk+1(I) = ∅, Nk+1(I) = {I}, Fk+1(I) = ∅
and fk+1|I = fk|I. If Vk+1,I 6= {fk(I)}, then let Gk+1,I be the graph with vertices the

points in Vk+1,I and edges the segments {[v1, v2], . . . , [vl−1, vl]}. The remainder of the

construction proceeds in the same way as in §3.7.2. See the right half of Figure 2 for the

image of fk+1(I).
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Figure 2. The image of fk+1(I): on the left, we have fk+1(I), where I is

as in §3.7.2; on the right, we have fk+1(I), where I is as in §3.7.3.

Lemma 3.6. Let I1, I2 ∈ Nk be distinct intervals as in §3.7 and let I3 ∈ Ek be an interval

as in §3.4. If I ′i ∈ Ek+1(Ii) for i = 1, 2, 3, then the segments fk+1(I ′1), fk+1(I ′2), and

fk+1(I ′3) are mutually disjoint.

Proof. This follows from similar arguments employed in the proof of Lemma 3.3. �

3.8. Step k + 1: intervals in Nk with non-flat image. In this final part of the

algorithm, we define Ek+1(I), Bk+1(I), Nk+1(I), Fk+1(I) and fk+1|I for those I ∈ Nk such

that αk,fk(I) ≥ α0. Let {I1, . . . , In} be an enumeration of such intervals. The construction

in this case resembles that in Step 0.

We start with I1. Let Vk+1,I1 be the set of points in Vk+1∩B(fk(I1), C∗ρk+1r0) that are

not images of some I ∈ Nk+1 defined in §3.4 and §3.7. Let Lk+1,I1 be the set of edges in

Lk+1 that have an endpoint in Vk+1,I1 . Then define Ṽk+1,I1 to be the union of Vk+1,I and

the set of all endpoints of edges in Lk+1,I1 . By the triangle inequality, the set Ṽk+1,I1 is

subset of B(v, 15A∗ρk+1r0). Finally, let Gk+1,I1 denote the graph with vertices Ṽk+1,I1 and

with edges Lk+1,I1 . We note that the graph Gk+1,I1 may be connected or disconnected.

If Ṽk+1,I1 = {fk(I1)}, then we simply set Ek+1(I1) = ∅, Bk+1(I1) = ∅, Nk+1(I1) = {I1},
Fk+1(I1) = ∅ and fk+1|I1 = fk|I1.

For the remainder of §3.8, let us assume that Ṽk+1,I1 contains at least two points. Let

G
(1)
k+1,I1

, . . . , G
(l1)
k+1,I1

denote the connected components of Gk+1,I1 , labeled so that G
(1)
k+1,I1

is the component containing fk(I1). There are two cases.

3.8.1. Connected graph. Suppose that Gk+1,I1 is connected. Apply Proposition A.1 for

∆ = I1, G = Gk+1,I1 and v = fk(I1) to obtain a collection of intervals I and a continuous

map g. If v′ ∈ Vk+1,I1 , then v′ has valence at most 2 by Lemma 2.5. Hence, by Proposition

A.1, there exists a component Jv′ of g−1(v′) with the following property:

If v′ is the endpoint of some e ∈ Lk+1,I1 , then there exists I ∈ I such that

g(I) = e and I ∩ Jv′ 6= ∅.
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Let N be the collection of the fixed intervals Jv′ where v′ ∈ Ṽk+1,I1 . Now define a set

E ⊆ I with two rules:

(1) If e ∈ Lk+1,I1 has both its endpoints in Vk+1,I1 then both components of g−1(e)

are in E .

(2) If e ∈ Lk+1,I1 has one endpoint v′ ∈ Vk+1,I1 and another in Ṽk+1,I1 \ Vk+1,I1 , then

only one component of g−1(e) (one that intersects Jv′) is in E .

Set Ek+1(I1) = E , Bk+1(I1) = I \ E , Nk+1(I1) = N , and define Fk+1(I1) to be the set

of components of I1 \
⋃

(Ek+1(I1) ∪Bk+1(I1) ∪Nk+1(I1)) and fk+1|I1 = g.

3.8.2. Several components. Suppose that l1 ≥ 2; that is, Gk+1,I1 is disconnected. See

Figure 3 for the image of fk+1(I). We will add some edges which will make the graph

connected and the preimage of these edges will be bridge intervals. To this end, for each

j ∈ {2, . . . , l1} fix some point vj ∈ Vk+1,I1 ∩G
(j)
k+1,I1

. Let {I1,1, . . . , I1,2l1−2} be a collection

of open intervals, enumerated according to the orientation of [0, 1], such that their closures

are mutually disjoint and are contained in the interior of I1. Let also {J1,1, . . . , J1,2l1−1}
be the components of I1 \

⋃2l1−2
j=1 I1,j enumerated according to the orientation of [0, 1].

Working as in §3.8.1, we obtain a family I1 of open intervals in J1,1, a subset E1 ⊂ I1,

a family N1 containing some components of J1,1 \
⋃
I1 and a continuous map g1 : J1,1 →

G
(1)
k+1,I1

. Similarly, for each j ∈ {2, . . . , l1} we obtain a family Ij of open intervals in

J1,2(j−1), a subset Ej ⊂ Ij, a family Nj containing some components of J1,2(j−1) \
⋃
Ij and

a continuous map gj : J1,2(j−1) → G
(j)
k+1,I1

. There exists a continuous map g : I1 → X that

extends the maps gj such that

(1) g(J1,2j+1) = fk(I1) for each j ∈ {1, . . . , l1 − 1};
(2) g|I1,j is affine for all j ∈ {1, . . . , 2l1 − 1} and g(I1,2j−1) = g(I1,2j) = [vj, fk(I1)] for

all j ∈ {1, . . . , l1 − 1}.
Define edge intervals Ek+1(I1) =

⋃l1
j=1 Ej and bridge intervals Bk+1(I1) =

⋃2l1−2
j=1 I1,j ∪⋃l1

j=1(Ij \ Ej). Set Nk+1(I1) =
⋃
j∈{1,2,4,...,2l1}Nj and define Fk+1(I1) to be the set of

components of I1 \
⋃

(Ek+1(I1) ∪Bk+1(I1) ∪Nk+1(I1)). Also, set fk+1|I1 = g.

3.8.3. Inductive hypothesis. Inductively, suppose that for i ∈ {1, . . . , r − 1} we have de-

fined Ek+1(Ii), Bk+1(Ii), Fk+1(Ii), Nk+1(Ii) and fk+1|Ii. We work now for Ir. Let Vk+1,Ir

be the set of points in Vk+1 ∩ B(fk(I1), C∗ρk+1r0) that are not images of some I ∈ Nk+1

defined in §3.4 or in §3.7 or for the previous intervals I1, . . . , Ir−1. Let Lk+1,Ir be the set

of edges in Lk+1 that have an endpoint in Vk+1,Ir and let Ṽk+1,Ir be the set of endpoints of

edges in Lk+1,Ir . Let now Gk+1,Ir be the (not necessarily connected) graph with vertices

the set Ṽk+1,Ir and with edges the set Lk+1,Ir . To continue, repeat the procedure carried

out for I1 mutatis mutandis.

Remark 3.7. By the choice of set N for I1, it follows that if I ∈ Nk+1(I1) and if fk+1(I)

is the endpoint of fk+1(J) for some J ∈ Ek+1(I1), then there exists J ′ ∈ Ek+1(I1) (possibly

J ′ = J) such that fk+1(J) = fk+1(J ′) and I ∩ J ′ 6= ∅. The same is true for all Ij.
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Figure 3. The image of fk+1(I): Blue segments represent edges in Lk+1,

black arrows represent images of intervals in Ek∪Bk, green arrows represent

images of intervals in Ek+1(I) and red arrows represent images of intervals

in Bk+1(I).

Lemma 3.8. Let J1 ∈ Nk be as in §3.8, let J2 ∈ Ek be as in §3.4, and let J3 ∈ Nk be as

in §3.7. If J ′i ∈ Ek+1(Ji) for i = 1, 2, 3, then the segments fk+1(J ′1), fk+1(J ′2), fk+1(J ′3) are

mutually disjoint.

Proof. By Lemma 3.6 we know that fk+1(J ′2) and fk+1(J ′3) are disjoint. Fix an interval

J1 ∈ Nk as in §3.8. Suppose that either J2 ∈ Ek is as in §3.4 or J2 ∈ Nk is as in §3.7.

Let J ′1 ∈ Ek+1(J1) and J ′2 ∈ Ek+1(J ′2). By Lemma 2.5, either fk+1(J ′1) ∩ fk+1(J ′2) 6= ∅ or

fk+1(J ′1) = fk+1(J ′2). However, we have defined Lk+1,J1 as those elements in Lk+1 that

are not contained in fk+1(J), where J ∈ Ek is as in §3.4 or J ∈ Nk is as in §3.7. Thus,

fk+1(J ′1) ∩ fk+1(J ′2) = ∅. �

3.9. Properties (P1)–(P7) for Step k + 1. We have now defined Bk+1, Ek+1, Fk+1,

Nk+1 and fk+1 : [0, 1]→ X. It remains to prove that fk+1 is continuous and that properties

(P1)–(P7) are satisfied by the new collections of intervals and fk+1. Properties (P1), (P2),

and (P3) follow immediately from the construction.

Continuity of fk+1. By design, the map fk+1 is continuous on every point interior to

an interval in Ek∪Bk∪Nk∪Fk. If x is an endpoint of some interval in Ek∪Bk∪Nk∪Fk,

then fk+1(x) = fk(x). Thus, continuity of fk+1 at x follows from continuity of fk at x.

Property (P6). The first claim of (P6), that fk+1(I) ∈ Vk+1 for all I ∈ Nk+1∪Fk+1,

is immediate from the construction. To check the second claim of (P6), fix v ∈ Vk+1. By

(V4), there exists v′ ∈ Vk such that |v − v′| < C∗ρk+1r0. By the inductive step, there

exists I ∈ Nk such that fk(I) = v′. There are two cases.
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Case 1. Suppose that αk,v′ < α0. Then, following the discussion in §3.7, either v =

fk+1(J) for some J ∈ Nk(J
′) and J ′ ∈ Ek as in §3.4, or v = fk+1(J) for some J ∈ Nk(I).

Case 2. Suppose that αk,v′ ≥ α0. Following the construction of the graph Gk+1,I

and the design of the map fk+1|I, if v is not the image of some J ∈ Nk+1(J ′), where

J ′ ∈ Ek ∪Bk ∪Nk \ {J ′}, then there exists J ∈ Nk+1(I) such that v = fk+1(J).

Property (P4). Fix I ∈ Ek+1. There are three cases.

Case 1. Suppose that I ∈ Ek+1(I0) for some I0 ∈ Ek. By the inductive hypothesis,

there exists unique I ′0 ∈ Ek \{I0} such that fk(I
′
0) = fk(I0) while fk(I0)∩fk(J) = ∅ for all

J ∈ Ek \ {I0, I
′
0}. By construction, there exists I ′ ∈ Ek+1(I ′0) such that fk+1(I) = fk+1(I ′).

Again by construction, fk+1(I) ∩ fk+1(J) = ∅ for all J ∈ Ek+1(I0) ∪ Ek+1(I ′0) \ {I, I ′}. By

Lemma 3.3, Lemma 3.6 and Lemma 3.8, fk+1(I) does not intersect any fk+1(J) for any

J ∈ Ek+1(J ′) and J ′ ∈ Ek ∪Nk \ {I0, I
′
0}.

Case 2. Suppose that I ∈ Ek+1(I0) for some I0 ∈ Nk as in §3.7. By construction, there

exists I ′ ∈ Ek+1(I0) \ {I} such that fk+1(I) = fk+1(I ′) while fk+1(I) ∩ fk+1(J) = ∅ for

all J ∈ Ek+1(I0) \ {I, I ′}. Moreover, by Lemma 3.6 and Lemma 3.8, fk+1(I) does not

intersect any fk+1(J) for any J ∈ Ek+1(J ′) and J ′ ∈ Ek ∪Nk \ {I0}.
Case 3. Suppose that I ∈ Ek+1(I0) for some I0 ∈ Nk as in §3.8. By Lemma 3.8,

fk+1(I) ∩ fk+1(I ′) = ∅ for all I ′ ∈ Ek+1(J) and all J ∈ Ek as in §3.4 or J ∈ Nk as in §3.7.

By the construction of fk+1|I0, there are two possibilities.

Case 3a. Suppose that both endpoints of fk+1(I0) are in Vk1,I0 . Then there exists an

interval I ′ ∈ Ek+1(I0) \ {I} such that fk+1(I) = fk+1(I ′). On the other hand, fk+1(I) 6∈
Lk+1,J for any J ∈ Nk \ {I0}. Thus, by Lemma 2.5, if J ′ ∈ Ek+1(J) and J ∈ Nk \ {I0},
then fk+1(J) ∩ fk+1(J ′) = ∅.

Case 3b. Suppose that only one endpoint of fk+1(I0) is in Vk1,I0 . In this case, by

construction, fk+1(I)∩fk+1(J) = ∅ for all J ∈ Ek+1(I0)\{I}. Moreover, there exists unique

I ′0 ∈ Nk \{I0} as in §3.8 such that Vk+1,I′0
contains the other endpoint of fk+1(I). As with

I0, there exists unique I ′ ∈ Ek+1(I ′0) such that fk+1(I ′) = fk+1(I) while fk+1(J)∩fk+1(I) =

∅ for all J ∈ Ek+1(I ′0). Finally, by the construction and Lemma 2.5, fk+1(I)∩ fk+1(J) = ∅
for all J ∈ Ek+1(J ′) and all J ′ ∈ Nk \ {I0, I

′
0} as in §3.8.

Property (P5). To prove the first claim in (P5), fix (v, v′) ∈ Flat(k + 1). Let v0 be

the point of Vk closest to v and let I0 ∈ Nk be such that fk(I0) = v0. There are four cases.

Case 1. Suppose that αk,v0 < α0 and v0 is non-terminal (see §3.7.1). Then either both

v and v′ lie to the left of v0 (with respect to ` − k, v0) or both lie to the right of v0. In

any case, [v, v′] is the preimage of some I ∈ Ek+1(J) under fk+1 where J ∈ Ek and fk(J)

is an edge with endpoint fk(I0).

Case 2. Suppose that αk,v0 < α0 and v0 is 2-sided terminal (see §3.7.3). Then [v, v′] is

the preimage of some I ∈ Ek+1(I0) under fk+1.

Case 3. Suppose that αk,v0 < α0 and v0 is 1-sided terminal (see §3.7.2). Then either

both v and v′ lie to the left of v0 (with respect to `k,v0) or both lie to the right of v0.

Depending on their position, we work as in Case 1 or Case 2.
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Case 4. Suppose that αk,v0 ≥ α0. By definition of graph Gk+1,I in §3.8, the segment

[v, v′] is the image of some J ∈ Ek+1 under fk+1.

To prove the second claim of (P5), fix (a, b) ∈ Ek+1 such that one of its endpoints has

flat image. Without loss of generality, assume αk+1,fk+1(a) < α0.

Case 1. Suppose that (a, b) ∈ Ek+1(I) for some I ∈ Nk as in §3.8. By construction of

fk+1 on such intervals, (fk+1(a), fk+1(b)) ∈ Flat(k + 1).

Case 2. Suppose that (a, b) ∈ Ek+1(I) for some I ∈ Nk as in §3.7. By construction of

fk+1 on such intervals, no point of Vk+1 ∩B(fk+1(a), 14A∗ρk+1r0),

Vk+1 ∩B(fk+1(a), 14A∗ρk+1r0) ⊂ Vk+1 ∩B(fk(I), 30A∗ρkr0),

lies strictly between fk+1(a) and fk+1(b) with respect to `k,fk(I). The same is true with

respect to `k+1,fk+1(a) by Lemma 2.1. Thus, (fk+1(a), fk+1(b)) ∈ Flat(k + 1).

Case 3. Suppose that (a, b) ∈ Ek+1(I) for some I ∈ Ek as in §3.4. The argument is

similar to Case 2

Property (P7). To check the final property, fix J ∈ Nk+1 and choose I ∈ Ek+1 such

that fk+1(J) is an endpoint of fk+1(I). There are several cases.

Case 1. Suppose J ∈ Nk+1(J0) for some J0 ∈ Nk as in §3.8. Then there exists

I ′ ∈ Ek+1(J0) such that fk+1(I ′) = fk+1(I). By the construction of Nk+1(J0) in §3.8,

I ′ ∩ J 6= ∅.
Case 2. Suppose J ∈ Nk+1(J0) for some J0 ∈ Ek as in §3.4. By (P4), there exists

I ′ ∈ Ek+1(J0) such that fk+1(I ′) = fk+1(I). The interval I ′ satisfies I ′ ∩ J 6= ∅.
Case 3. Suppose J ∈ Nk+1(J0) for some J ′ ∈ Nk as in §3.7. There are three subcases.

Case 3a. Suppose that fk+1(J) 6= fk(J0). Then by the choice of Nk+1(J0), there exists

I ′ ∈ Ek+1(J0) such that fk+1(I ′) = fk+1(I) and I ′ ∩ J 6= ∅.
Case 3b. Suppose that fk+1(J) = fk(J0) and there exists Ĩ ∈ Ek+1(J0) such that

fk+1(Ĩ) = fk+1(I). As in Case 3a, the claim follows from the choice of Nk+1(J0).

Case 3c. Suppose that fk+1(J) = fk(J0) and there exists no Ĩ ∈ Ek+1(J0) such that

fk+1(Ĩ) = fk+1(I). In this case, fk(J0) is the endpoint of fk(I0) for some I0 ∈ Ek. By the

inductive hypothesis and (P4), there exists at least one and at most two intervals I ′0 ∈ Ek
such that fk(I0) = fk(I

′
0) and I ′0 ∩ J0 6= ∅. On one hand, if there is only one interval I ′0,

then J0 is as in §3.7.1 and J = J0. Hence there exists I ′ ∈ I ′0 such that fk+1(I ′) = fk+1(I)

and I ′∩J 6= ∅. On the other hand, if there are two intervals I ′0, I
′′
0 , then one of them has a

closure which intersects J , say I ′0. Then there exists I ′ ∈ I ′0 such that fk+1(I ′) = fk+1(I)

and I ′ ∩ J 6= ∅.

3.10. Choices in the Traveling Salesman algorithm. In §§2.2 and 3, we made a

series of implicit and explicit choices.

(C0) The choice of α0 ∈ (0, 1/16] determines the set Flat(k) of flat pairs. The constant

14 in the definition of Flat(k) is chosen to facilitate the estimates in §4 (see (E2)),

but has not been optimized. The constant 30 in the definition of αk,v is chosen to

be larger than (1 + 3(1/16)2) · 2 · 14. For example, see the proof of Lemma 2.5.
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(C1) If I, I ′ ∈ Ek satisfy fk(I) = fk(I
′) and are as in §3.4 (that is, I has at least one

endpoint x with αk,fk(x) < α0), then either Nk+1(I) = Fk+1(I ′) = ∅ or vice-versa.

(C2) If I ∈ Nk is as in §3.7.3 (i.e. αk,fk(I) < α0 and Vk ∩B(fk(I), 14A∗ρkr0) = {fk(I)}),
then there may exist up to two different ways to parameterize the graph Gk+1,I

therein.

(C3) If I ∈ Nk is as in §3.8 (i.e. αk,fk(I) ≥ α0) and G
(1)
k+1,I , . . . , G

(l)
k+1,I are the graph

components of the graph Gk+1,I therein, then

(C3a) we choose the order in which we parameterize the graph components and

(C3b) in each graph component, there exists up to two choices of parameterization.

Similar choices are made in the step 0.

(C4) We get to choose the enumeration of intervals I in Nk such that αk,fk(I) ≥ α0.

The algorithm can be made more flexible by permitting four additional choices. Let

α̃0 ∈ (0, α0) and Ã > 14A∗.

(C5) Suppose that I ∈ Nk.

• If αk,fk(I) < α̃0 then we treat I as in §3.7; i.e., we treat fk(I) as a flat vertex.

• If αk,fk(I) ≥ α0 then we treat I as in §3.8; i.e., we treat fk(I) as a non-flat

vertex.

• If αk,fk(I) ∈ [α̃0, α0) then we can either treat I as in §3.7 or as in §3.8.

(C6) Suppose that v ∈ Vk is chosen to be considered “flat” by (C5). Let ` be the

approximating line for (k, v) and let v′ ∈ Vk be such that there exists no v′′ ∈
Vk ∩B(v, Ãρkr0) such that π`(v

′′) is between v and v′.

• If |v − v′| < 14A∗ρkr0, then (v, v′) ∈ Flat(k).

• If |v − v′| ≥ Ãρkr0, then (v, v′) 6∈ Flat(k).

• If |v − v′| ∈ [14A∗ρkr0, Ãρkr0), then we are free to choose whether (v, v′) is

contained in Flat(k) or not.

(C7) Similarly to (C6), suppose that I ∈ Ek is as in §3.4; i.e., fk(I) has at least one

endpoint x whose image is “flat” by (C5). Let {v1, . . . , vl} and {I1, . . . , Il−1} be

as in §3.4.

• If |vi − vi+1| < 14A∗ρk+1r0, then we set Ii ∈ Ek+1.

• If |vi − vi+1| ≥ Ãρk+1r0, then we set Ii ∈ Bk+1.

• If |vi − vi+1| ∈ [14A∗ρk+1r0, Ãρk+1r0), then we can choose in each instance

whether Ii ∈ Ek+1(I) or Ii ∈ Bk+1(I).

(C8) Suppose that {I1, . . . , In} are the intervals in Nk that have a non-flat image.

Suppose also that we have defined fk+1 on I1, . . . , Ir−1 and on intervals in Nk that

have an image chosen to be flat. Let v ∈ Vk+1 be a point which is not the image

of some I ∈ Nk+1(J), where J ∈ {I1, . . . , Ir−1} or J ∈ Nk is as in §3.7.

• If v ∈ B(fk(Ir), 14A∗ρkr0), then v ∈ Vk+1,Ir .

• If v ∈ B(fk(Ir), Ãρkr0) \ B(fk(Ir), 14A∗ρkr0), then we may choose whether

v ∈ Vk+1,Ir or not.

Note that the (C5) has subsequent implications on the treatment of intervals I ∈ Ek.
For instance, if both endpoints if I have images chosen to be non-flat, then I ∈ Bk+1;
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otherwise, we treat I as in §3.4. Similarly, (C6) gives us the set Lk and together with

(C8) affects the parametrization near non-flat vertices.

Remark 3.9 (coherence). In the original, non-parametric Analyst’s Traveling Salesman

construction, Jones [Jon90] required the coherence property (V2), i.e. Vk ⊂ Vk+1. The first

author and Schul [BS17] established a non-parametric Traveling Salesman construction,

which replaced (V2) with the weaker property that for all v ∈ Vk, the set

v′ ∈ Vk+1 ∩B(v, C∗ρkr0)

is nonempty. This relaxation was crucial for the proof of the main result in [BS17], which

characterized Radon measures in RN that are carried by rectifiable curves. We would like

to emphasize that in the parametric Traveling Salesman construction described above,

we heavily rely on (V2). At this time, we do not know how to build a parameterization

under the relaxed condition of [BS17].

4. Mass of intervals

In this section, we use the construction of §3, to assign mass to intervals defined in §3.

The total mass Ms on the domain of the maps fills the role that the Hausdorff measure

H1 of the image plays in the proof of the sufficient half of the Analyst’s TST given in

[Jon90] or [BS17]. The main result of this section is Proposition 4.11, which bounds the

total mass of [0, 1] by a sum involving the flatness approximation errors αk,v and variation

excess τs(k, v, v
′) defined in §2.2. For each k ≥ 0, set

Ik := Ek ∪Bk ∪Nk ∪Fk and I :=
⋃
k≥0

Ik.

For each I ∈ Ik, set Ik+1(I) := Ek+1(I) ∪Bk+1(I) ∪Nk+1(I) ∪Fk+1(I).

Remark 4.1. If I ∈ Ik ∩Im for some m 6= k, then fk|I = fm|I.

4.1. Trees over intervals. Given k ≥ 0 and I ∈ Ik, we define a finite tree T over (k, I)

to be a finite subset of
⋃
m≥0({m} ×Im) satisfying the following three conditions.

(1) The pair (k, I) ∈ T . If (m, J) ∈ T , then m ≥ k and J ⊂ I.

(2) If (m, J) ∈ T and there exists J ′ ∈ Im+1(J) such that (m + 1, J ′) ∩ T , then

{m+ 1} ×Im+1(J) ⊆ T .

(3) If (m, J) ∈ T for some m > k and J ∈ Im(J ′), then (m− 1, J ′) ∈ T .

The first condition says that the root of the tree is (k, I) and its elements are descendants

of (k, I). The second condition says that if one child (m + 1, J ′) of (m, J) is in T , then

every child of (m, J) is in T . The third condition says that if (m, J) is in T , then all its

ancestors up to (k, I) are in T .

We extend this notion to the entire domain by defining a finite tree T over [0, 1] to be

a set of the form

T = {[0, 1]} ∪
⋃
I∈I0

TI ,
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where TI is a finite tree over (0, I). A finite tree over [0, 1] may be thought to belong to

step k = −1 of the construction.

Let T be a finite tree over (k, I). The boundary ∂T of T is defined by

∂T := {(m, J) ∈ T : ({m+ 1} ×Im+1(I)) ∩ T = ∅}.

The depth m(T ) of T is the integer defined by

m(T ) := max{m ≥ 0 : (m, J) ∈ T} = max{k ≥ 0 : (m, J) ∈ ∂T}.

If m(T ) ≥ 1, the parent tree p(T ) is defined by

p(T ) := T \ ({m(T )} ×Im(T ))

Note that m(p(T )) = m(T )− 1.

Remark 4.2. If T is a finite tree over (k, I) and ∂T = {(k1, J1), . . . , (kn, Jn)}, then the

intervals J1, . . . , Jn partition I. That is, for all x ∈ I, there exists a unique i ∈ {1, . . . , n}
such that x ∈ Ji.

4.2. Mass of intervals. For all s ≥ 1, k ≥ 0, and intervals I ∈ Ik, define the s-mass

Ms(k, I) of (k, I) by

Ms(k, I) := sup
T

∑
(k′,I′)∈∂T

(diam fk′(I
′))s ∈ [0,∞],

where the supremum is taken over all finite trees over (k, I). This notion extends to [0, 1]

by assigning

Ms([0, 1]) :=
∑
I∈I0

Ms(0, I) ∈ [0,∞].

Lemma 4.3. Let k ≥ 0 and I ∈ Ik.

(1) If I ∈ Bk, then Ms(k, I) = (diam fk(I))s.

(2) If I ∈ Fk, then Ms(k, I) = 0.

(3) Ms(k, I) ≥
∑

I′∈Ik+1(I)Ms(k + 1, I ′).

(4) If I ∈ Ik ∩Im for some m ≥ 0, then Ms(k, I) =Ms(m, I).

Before proving Lemma 4.3, we make two clarifying remarks. First, it is possible for

an interval I ∈ Nk to have Ms(k, I) > 0 even though diam fk(I)s = 0. This happens

whenever I ∈ Nk and Ek+1(I)∪Bk+1(I) is non-empty. Second, Lemma 4.3(4) implies that

given I ∈ Ik, the mass Ms(k, I) is defined independently of the step of the construction

in which I appears. Nevertheless, we include the step k in definition of the mass to

improve exposition of the estimates in §4.5 and §4.6.

Proof of Lemma 4.3. For the first claim, note that if I ∈ Bk and m ≥ k + 1, then

Im(I) = {I}. Therefore, if T is a finite tree over I of depth m, then ∂T = {(m, I)}.
Thus, Ms(k, I) = supm≥k(diam fm(I))s = (diam fk(I))s.

For the second claim, note that if I ∈ Fk and m ≥ k+ 1, then Im(I) = {I} and fm(I)

is a point. Therefore, if T is a finite tree over I of depth m, then ∂T = {(m, I)}. Thus,

Ms(k, I) = supm≥k(diam fm(I))s = 0.
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For the third claim, let us first assume that Ms(k + 1, J) =∞ for some J ∈ Ik+1(I).

Fix M > 0 and find a finite tree TJ over (k + 1, J) such that∑
(k′,J ′)∈TJ

(diam fk′(J
′))s > M.

The collection T = TJ ∪ {(k, I)} ∪ ({k + 1} × Ik+1(I)) is a finite tree over (k, I) and

∂TJ ⊂ ∂T . Hence

Ms(k, I) ≥
∑

(k′,I′)∈∂T

(diam fk′(I
′))s ≥

∑
(k′,J ′)∈∂TJ

(diam fk′(J
′))s > M.

We conclude that Ms(k, I) =∞.

Alternatively, assume that Ms(k + 1, J) is finite for all J ∈ Ik+1(I). Fix ε > 0. For

each interval J ∈ Ik+1(I), let TJ be a finite tree over (k + 1, J) such that∑
(k′,J ′)∈∂TJ

(diam fk′(J
′))s >Ms(k + 1, J)− ε

card(Ik+1(I))
.

Then the collection T = {(k, I)} ∪
⋃
J∈Ik+1(I) TJ is a finite tree over (k, I) with ∂T =⋃

J∈Ik+1(I) ∂TJ . Therefore,

Ms(k, I) ≥
∑

J∈Ik+1(I)

∑
(k′,J ′)∈∂TJ

(diam fk′(J
′))s >

∑
J∈Ik+1(I)

Ms(k + 1, J)− ε.

The third claim follows by taking ε ↓ 0.

For the fourth claim, suppose that I ∈ Ik ∩Im for some m and k, say without loss of

generality that m > k. Because I ∈ Ik ∩Im, we have In(I) = {I} for all k ≤ n ≤ m.

Thus, iterating the third claim, Ms(k, I) ≥Ms(m, I). For the opposite inequality, let T

be a finite tree over (k, I). If (m, I) 6∈ T , then T = {(k, I), . . . , (l, I)} for some k ≤ l ≤
m− 1 and we define T ′ = {(m, I)}. If (m, I) ∈ T , then T ⊃ {(k, I), . . . , (m− 1, I)} and

we set T ′ = T \{(k, I), . . . , (m−1, I)} so that T ′ is a finite tree over (m, I) and ∂T = ∂T ′.

In either case, ∑
(k′,I′)∈∂T

(diam fk′(I
′))s =

∑
(k′,I′)∈∂T ′

(diam fk′(I
′))s

and it follows that Ms(k, I) ≤Ms(m, I). �

When s = 1, the 1-mass is comparable to the Hausdorff measure H1 of the image.

Lemma 4.4. For each k ≥ 0 and each I ∈ Ik,

M1(k, I) = lim
m→∞

∑
J∈Im
J⊂I

diam fm(J) ≥ lim sup
m→∞

H1(fm(I)).

If there exists n ∈ N such that fm|
⋃

Bk is at most n-to-1 for all m ≥ k, then

M1(k, I) 'n lim inf
m→∞

H1(fm(I))
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Proof. Fix k ≥ 0 and I ∈ Ik. By definition of the mass and (P2),

M1(k, I) ≥ lim sup
m→∞

∑
J∈Im
J⊂I

diam fm(J) ≥ lim sup
m→∞

H1(fm(I)).

To establish the other direction, let T be a finite tree over I of depth m ≥ k and

enumerate with ∂T = {(k1, I1), . . . , (kn, In)}, where each ki ≤ m. For each i = 1, . . . , n,

let Ii be the set of all intervals J ∈ Im such that J ⊂ Ii. Then∑
J∈Im
J⊂I

diam fm(J) =
n∑
i=1

∑
J∈Ii

diam fm(J) ≥
n∑
i=1

diam fki(Ii) =
∑

(l,J)∈∂T

diam fl(J).

Therefore,

sup
m≥k

∑
J∈Im
J⊂I

diam fm(J) ≤M1(k, I) = sup
T

∑
(l,J)∈∂T

diam fl(J) ≤ lim inf
m→∞

∑
J∈Im
J⊂I

diam fm(J).

This shows that

M1(k, I) = lim
m→∞

∑
J∈Im
J⊂I

diam fm(J).

By (P4), the maps fm|
⋃

Em are 2-to-1. In §3, we did not examine overlaps of images

of bridge intervals. By modifying the algorithm, the overlap of images of bridge intervals

can be made 2-to-1 (see the proof of Proposition 5.7). Nevertheless, suppose that we

know the overlaps of images of bridge intervals is at most n-to-1 for some n ≥ 2. Then

M1(k, I) = lim
m→∞

∑
J∈Im
J⊂I

diam fm(J) ≤ 1

n
lim inf
m→∞

H1(fm(I)). �

While Lemma 4.4 does not hold when s > 1, we always have the following comparison

between the s-mass and the Hausdorff measure Hs of the closure of the points in
⋃∞
k=0 Vk.

Lemma 4.5. For all s ≥ 1, Hs
(⋃∞

k=0 Vk

)
.s,C∗,ξ2 Ms([0, 1]).

Proof. Fix δ > 0 and choose m ∈ N sufficiently large such that 2C∗ξm+1
2 r0/(1 − ξ2) ≤ δ.

By (V0), (V2), and (V4), the collection {B(v, C∗ρm+1r0/(1− ξ2)) : v ∈ Vm} is a cover of⋃∞
k=0 Vk with elements of diameter at most 2C∗ρm+1r0/(1− ξ2) ≤ 2C∗ξm+1

2 r0 ≤ δ. Let T

be the maximal finite tree over [0, 1] of depth m, i.e. T =
⋃m
k=0 Ik. Then

Hs
δ

(⋃∞
k=0 Vk

)
≤
∑
v∈Vm

(
2C∗ρm+1r0

1− ξ2

)s
≤
(

2C∗ξ2

1− ξ2

)s ∑
(m,I)∈∂T

(diam fm(I))s

.s,C∗,ξ2 Ms([0, 1]).

Taking δ ↓ 0 completes the proof. �

We include Lemma 4.4 and Lemma 4.5 for completeness. We will not use either lemma

in any the estimates below.
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4.3. Terminal vertices and phantom mass. Let I ∈ Nk be an interval such that

αk,fk(I) < α0. We classify fk(I) according to the arrangement of nearby points in Vk+1.

• If I is as in §3.7.1, then fk(I) is called a non-terminal vertex in Vk.

• If I is as in §3.7.2, then fk(I) is called a 1-sided terminal vertex in Vk.

• If I is as in §3.7.3, then fk(I) is called a 2-sided terminal vertex in Vk.

Motivated by [Jon90] and [BS17], for each k ≥ 0 we will define a set Pk ⊂ {k} ×Nk

and for each (k, I) ∈ Pk define a number pk,I > 0, which we call the phantom mass at

(k, I). The phantom mass pk,I will let us pay for the length of edges between vertices in

Vk+1 nearby fk(I) that do not lie between vertices in Vk nearby fk(I) (i.e. the blue edges

in Figure 2). To start, define an auxiliary parameter P depending only on s, C∗, and ξ2

by requiring that [P + 2(1.1C∗)s] ξs2 = P. That is,

(4.1) P =
2(1.1C∗)s

1− ξs2
.

For each k ≥ 0, define

Pk = {(k, I) : I ∈ Nk, αk,fk(I) < α0 and fk(I) is 1- or 2-sided terminal in Vk}.

For each k ≥ 0 and (k, I) ∈Pk, assign

pk,I :=

{
2Pρskr

s
0, if fk(I) is 2-sided terminal

Pρskr
s
0, if fk(I) is 1-sided terminal.

Lemma 4.6. Let I ∈ Nk be an interval such that αk,fk(I) < α0. If fk(I) is 1-sided

terminal, then ∑
J∈Ik+1(I)

(diam fk+1(J))s < 2(1.1C∗)sρsk+1r
s
0.

If fk(I) is 2-sided terminal, then∑
J∈Ik+1(I)

(diam fk+1(J))s < 4(1.1C∗)sρsk+1r
s
0.

Proof. Suppose v = fk(I) is 1-sided terminal and let {v1, . . . , vn} be an enumeration of the

points in Vk+1 ∩ B(v, C∗ρk+1r0) starting from v1 = v and moving consecutively towards

the terminal direction. Then∑
J∈Ik+1(I)

(diam fk+1(J))s = 2
n∑
i=1

|vi+1− vi|s ≤ 2(1 + 3α2
k,v)

s|v1− vn|s < 2(1.1)s(C∗ρk+1r0)s

by Lemma 2.2, since 1 + 3α2
k,v ≤ 1 + 3(1/16)2 < 1.1. The case that v is 2-sided terminal

follows from a similar computation. �
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4.4. Special bridge intervals. Given k ≥ 1, we define

B∗k := {(k, I) : I ∈ Bk(J), J ∈ Ek−1 is as in §3.4}.

Recall from §3.4 that if (k, I) ∈ B∗k, then 14A∗ρkr0 ≤ diam fk(I) < 14A∗ρk−1r0.

Lemma 4.7. If I ∈ B∗k, then

1

6
(diam fk(I))s ≥ Pρskr

s
0.

Proof. Because diam fk(I) ≥ 14A∗ρkr0, it suffices to check that (14A∗)s ≥ 6P . Recalling

the definition of A∗, we find that

(14A∗)s =

(
14C∗

1− ξ2

)s
≥ 12(1.1C∗)s

1− ξs2
= 6P.

Here 1/(1− ξ2)s ≥ 1/(1− ξs2) because 0 < ξ2 < 1 and s ≥ 1. �

Let T be a finite tree over [0, 1], let m be the depth of T and let 0 ≤ k ≤ m be an

integer. Define

B∗k(T ) := {(k, I) ∈ B∗k : there exists (k, J) ∈ T ∩ ({k} ×Nk) such that J ∩ I 6= ∅}.

Although the sets B∗k(T ) are not necessarily subsets of ∂T , we show in the next lemma

that each element in ∂T generates at most two elements in
⋃m
k=1 B∗k(T ).

Lemma 4.8. Let T be a finite tree over [0, 1] with depth m ≥ 1 and let k ≤ m.

(1) For each (k, I) ∈ B∗k(T ), there exists a unique (l, J) ∈ ∂T such that I ⊂ J . In

fact, J ∈ El ∪Bl.

(2) For each (l, J) ∈ ∂T such that J ∈ El ∪ Bl, there exist at most two distinct

(k, I) ∈
⋃m
i=0 B∗i (T ) such that I ⊂ J .

Proof. The first claim of (1) follows immediately from Remark 4.2. For the second claim,

let (k, I) ∈ B∗k(T ). There are two cases.

Case 1. If (k, I) ∈ T , then In(I) = {I} and I ∈ Bn for all n > k, since I is a bridge

interval. Therefore, (l, I) ∈ ∂T for some l ≤ m and I ∈ Bl.

Case 2. Suppose now that (k, I) 6∈ T . If J was in Nl ∪Fl, then the closure of I would

be contained in the interior of J and I would intersect only intervals I ′ ∈ Il′ for which

(l′, I ′) 6∈ T , which is a contradiction.

For (2), fix (l, J) ∈ ∂T with J ∈ El ∪ Bl and assume that {(ki, Ji) : i = 1, 2, 3}
are distinct elements in

⋃m
j=0 B∗j (T ) such that Ji ⊂ J for i = 1, 2, 3. Without loss of

generality, assume that J2 is between J1 and J3, in the orientation of J . Then there exists

l′ ≥ l + 1 and J ′ ⊆ J such that J ′ ∈ Nl′ and (l′, J ′) ∈ T . But then (l, J) 6∈ ∂T which is a

contradiction. �

We now impose an additional restriction on α0.

Lemma 4.9. For all C∗, ξ1, and ξ2, there exists α1 ∈ (0, 1/16] such that if α0 ≤ α1, then

for all k ≥ 0, (v, v′) ∈ Flat(k), and y, y′ ∈ Vk+1(v, v′), we have |y − y′| ≤ |v − v′|.
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Proof. Enumerate Vk+1(v, v′) = {v1, . . . , vn} from left to right, so that v1 = v and vn = v′.

Let y = vl and y′ = vm for some 1 ≤ l < m ≤ n. If y = v and y′ = v′, the conclusion

is trivial. Thus, let us suppose that there exists at least one point to the left of y or the

right of y′, say without loss of generality that l ≥ 2. Let xi = π`k,v for all 1 ≤ i ≤ n.

Then, arguing as in the proof of Lemma 2.2,

|v1 − v2|+ |vl − vm|
1 + 3α2

0

≤ |x1 − x2|+ |xl − xm| ≤ |x1 − xn| ≤ |v − v′|.

Because Vk+1 is ρk+1 separated,

|vl − vm| ≤ (1 + 3α2
0)|v − v′| − |v1 − v2| ≤ (1 + 3α2

0)|v − v′| − ρk+1r0

= |v − v′|
(

1 + 3α2
0 −

ρk+1r0

|v − v′|

)
.

Now |v − v′| ≤ 14A∗ρkr0 ≤ 14A∗ξ−1
1 ρk+1r0. Hence |vl − vm| ≤ |v − v′| provided that

1 + 3α2
0 −

ξ1

14A∗
≤ 1.

Thus, we can take

�(4.2) α1 := min

{
1

16
,

(
ξ1

42A∗

)1/2
}
.

Together Lemma 4.8 and Lemma 4.9 yield the following result.

Corollary 4.10. Assume α0 ≤ α1. If T is a finite tree over [0, 1] of depth m, then,

m∑
k=1

∑
(k,J)∈B∗k(T )

(diam fk(J))s ≤ 2
∑

(l,J)∈∂T

(diam fl(J))s.

4.5. An upper bound for the total mass. Here we prove the following proposition

which gives an upper bound for the mass of [0, 1] in terms of the variation excess τs(k, v, v
′)

of flat pairs (v, v′) ∈ Flat(k) defined in §2.2.

Proposition 4.11. Assume that α0 ≤ α1 (see Lemma 4.9). For all s ≥ 1,

Ms([0, 1]) .s,C∗,ξ2 r
s
0 +

∞∑
k=0

∑
(v,v′)∈Flat(k)

τs(k, v, v
′)ρskr

s
0 +

∞∑
k=0

∑
v∈Vk

αk,v≥α0

ρskr
s
0.

The proof of Proposition 4.11 reduces to proving the following lemma (cf. [BS17, (9.4)]).

Recall the definition of the parent tree from §4.1.

Lemma 4.12. Let k ≥ 1 be an integer, let T be a finite tree over [0, 1] of depth k+ 1 and

let p(T ) be the parent tree. There exists a constant C > 0 depending only on s, C∗, and
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ξ2 such that∑
(l,I)∈∂T

(diam fl(I))s +
∑

(k+1,I)∈Pk+1∩∂T

pk+1,I

≤
∑

(l,I)∈∂p(T )

(diam fl(I))s +
∑

(k,I)∈Pk∩∂p(T )

pk,I +
1

3

∑
(k+1,I)∈B∗k+1(T )

(diam fk+1(I))s

+ C
∑
v∈Vk

αk,v≥α0

ρskr
s
0 + C

∑
w∈Vk+1

αk+1,w≥α0

ρsk+1r
s
0 + C

∑
(v,v′)∈Flat(k)

τs(k, v, v
′)ρskr

s
0.

(E)

We prove Lemma 4.12 in §4.6. Assuming that Lemma 4.12 holds, here is the proof of

Proposition 4.11.

Proof of Proposition 4.11. Assume that α1 ≤ α0. Let T be a finite tree over [0, 1] of

depth m. Set Tm = T and for each 1 ≤ k ≤ m (if any) set Tk−1 = p(Tk). Note that

T0 = {0} ×I0. By Lemma 4.12, for all 1 ≤ k ≤ m (if any),∑
(l,I)∈∂Tk

(diam fl(I))s +
∑

(k,I)∈Pk∩∂Tk

pk,I

≤
∑

(l,I)∈∂Tk−1

(diam fl(I))s +
∑

(k−1,I)∈Pk−1∩∂Tk−1

pk−1,I +
1

3

∑
(k,I)∈B∗k(Tk)

(diam fk(I))s

+ C
∑

v∈Vk−1
αk−1,v≥α0

ρsk−1r
s
0 + C

∑
w∈Vk

αk,w≥α0

ρskr
s
0 + C

∑
(v,v′)∈Flat(k−1)

τs(k − 1, v, v′)ρsk−1r
s
0.

Iterating the latter inequality,∑
(l,I)∈∂T

(diam fl(I))s ≤
∑

I∈E0∪B0

(diam f0(I))s +
∑
I∈P0

p0,I +
1

3

m∑
k=1

∑
I∈B∗k(T )

(diam fk(I))s

+ 2C
m∑
k=0

∑
v∈Vk

αk,v≥α0

ρskr
s
0 + C

m∑
k=1

∑
(v,v′)∈Flat(k)

τs(k, v, v
′)ρskr

s
0.

Since α0 ≤ α1, we obtain 1
3

∑m
k=1

∑
I∈B∗k(T )(diam fk(I))s ≤ 2

3

∑
(l,I)∈∂T (diam fl(I))s by

Corollary 4.10. This is the only place in the proof of the Proposition that we use the

restriction α0 ≤ α1. Therefore,∑
(l,I)∈∂T

(diam fl(I))s ≤ 3
∑

I∈E0∪B0

(diam f0(I))s + 3
∑
I∈P0

p0,I

+ 6C
m∑
k=0

∑
v∈ Vk
αk,v≥α0

ρskr
s
0 + 3C

m−1∑
k=0

∑
(v,v′)∈Flat(k)

τs(k, v, v
′)ρskr

s
0.

There are now two alternatives. On one hand, suppose that α0,v < α0 for some v ∈ V0.

Then V0 projects onto an (1 + 3(1/16)2)−1r0 separated set in `0,v of diameter at most
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2C∗r0 by Lemma 2.1. Hence cardV0 .C∗ 1 and∑
I∈E0∪B0

(diam f0(I))s +
∑
I∈P0

p0,I .s,C∗,ξ2 r
s
0.

On the other hand, suppose that α0,v ≥ α0 for all v ∈ V0. Then∑
I∈E0∪B0

(diam f0(I))s +
∑
I∈P0

p0,I .s,C∗,ξ2
∑
v∈V0

α0,v≥α0

rs0

In either case, we arrive at

∑
(l,I)∈∂T

(diam fl(I))s .s,C∗,ξ2 r
s
0 +

m−1∑
k=0

∑
(v,v′)∈Flat(k)

τs(k, v, v
′)ρskr

s
0 +

m∑
k=0

∑
v∈ Vk
αk,v≥α0

ρskr
s
0

.s,C∗,ξ2 r
s
0 +

∞∑
k=0

∑
(v,v′)∈Flat(k)

τs(k, v, v
′)ρskr

s
0 +

∞∑
k=0

∑
v∈ Vk
αk,v≥α0

ρskr
s
0.

Since T was an arbitrary tree over [0, 1], we obtain the desired bound on Ms([0, 1]). �

4.6. Proof of Lemma 4.12. The proof is divided into five estimates (E1), (E2), (E3),

(E4) and (E5), whose sum gives (E). Towards this end, we split the left hand side of (E)

into smaller sums by making the following four decompositions.

Firstly, ∂T can be partitioned as E1 ∪ E2 ∪ E3 ∪ B1 ∪ B2 ∪ B3 ∪ B4 ∪ F ∪ (∂T ∩ ∂p(T )),

where

E1 = {(k + 1, I) ∈ ∂T : I ∈ Ek+1(J) and J ∈ Nk is as in §3.8},
E2 = {(k + 1, I) ∈ ∂T : I ∈ Ek+1(J) and J ∈ Nk is as in §3.7},
E3 = {(k + 1, I) ∈ ∂T : I ∈ Ek+1(J) and J ∈ Ek is as in §3.4},
B1 = {(k + 1, I) ∈ ∂T : I ∈ Bk+1(J) and J ∈ Nk is as in §3.8},
B2 = {(k + 1, I) ∈ ∂T : I ∈ Bk+1(J) and J ∈ Ek is as in §3.5},
B3 = {(k + 1, I) ∈ ∂T : I ∈ Bk+1(J) and J ∈ Ek is as in §3.4},
B4 = {(k + 1, I) ∈ ∂T : I ∈ Bk+1(J) and J ∈ Bk is as in §3.3},
F ⊆ {k + 1} × (Nk+1 ∪Fk+1).

Secondly, Pk+1 ∩ ∂T can be partitioned as P1 ∪ P2 ∪ P3, where

P1 = {(k + 1, I) ∈ ∂T ∩Pk+1 : I ∈ Nk+1(J) and J ∈ Nk is as in §3.8},
P2 = {(k + 1, I) ∈ ∂T ∩Pk+1 : I ∈ Nk+1(J) and J ∈ Nk is as in §3.7},
P3 = {(k + 1, I) ∈ ∂T ∩Pk+1 : I ∈ Nk+1(J) and J ∈ Ek is as in §3.4}.
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Thirdly, ∂p(T ) can be partitioned as E ′1 ∪ E ′2 ∪ F ′ ∪ (∂T ∩ ∂p(T )), where

E ′1 = {(k, I) ∈ ∂p(T ) \ ∂T : I ∈ Ek is as in §3.5},
E ′2 = {(k, I) ∈ ∂p(T ) \ ∂T : I ∈ Ek is as in §3.4},
B′1 = {(k, I) ∈ ∂p(T ) \ ∂T : I ∈ Bk is as in §3.3},
F ′ ⊆ {k} × (Nk ∪Fk).

Fourthly, set B ∗∗
k+1(T ) = B∗k+1(T ) t B∗k+1(T ). Then define collections B∗1 and B∗2 as

follows. If I ∈ Nk, αk,fk(I) < α0, Ik+1(I) ⊂ ∂T , and fk(I) is an endpoint of the image

fk+1(J) of (k + 1, J) ∈ B∗k+1, then we include a copy of (k + 1, J) from B ∗∗
k+1(T ) in B∗1.

If K ∈ Nk and fk(K) is the endpoint of fk+1(I) for some (k + 1, I) ∈ B3 that lies strictly

between the endpoints of the image fk(J) of the associated edge interval J ∈ Ek, then

we include a copy of (k + 1, I) from B ∗∗
k+1(T ) in B∗2. Because each bridge has only two

endpoints, we can choose the included copies so that B∗1 ∪ B∗2 ⊂ B ∗∗
k+1.

Before proceeding to the estimates, we remark that∑
(k,I)∈F ′

(diam fk(I))s =
∑

(k+1,I)∈F

(diam fk+1(I))s = 0,

because fk is constant on each interval in Nk ∪Fk by (P2).

Estimate 1. Here we deal with phantom masses and new intervals coming from some

I ∈ Nk whose image is not flat. In particular, we will show that there exists C1 depending

only on s, C∗, and ξ2 such that∑
(k+1,I)∈E1∪B1

(diam fk+1(I))s +
∑

(k+1,J)∈P1

pk+1,J

≤ C1

∑
v∈Vk

αk,v≥α0

ρskr
s
0 + C1

∑
w∈Vk+1

αk+1,w≥α0

ρsk+1r
s
0.

(E1)

Since

{I ∈ Nk : αk,fk(I) ≥ α0 and Ik+1(I) ⊂ ∂T} ⊆ {I ∈ Nk ∩ ∂p(T ) : αk,fk(I) ≥ α0},

inequality (E1) follows from the inequality

∑
I∈Nk

{k+1}×Ik+1(I)⊂∂T
αk,fk(I)≥α0

 ∑
J∈Ek+1(I)∪Bk+1(I)

(diam fk+1(I))s +
∑

J∈Nk+1(I)
(k+1,J)∈Pk+1

pk+1,J


≤ C1

∑
I∈Nk

{k+1}×Ik+1(I)⊂∂T
αk,fk(I)≥α0

ρskr
s
0 + C1

∑
I∈Nk

{k+1}×Ik+1(I)⊂∂T
αk,fk(I)≥α0

∑
J∈Nk+1(I)

αk+1,fk+1(J)≥α0

ρsk+1r
s
0.

(4.3)

To prove (4.3), fix any I ∈ Nk such that {k + 1} × Ik+1(I) ⊂ ∂T and αk,fk(I) ≥ α0.

Recall that Nk+1(I) is in one-to-one correspondence with Vk+1,I defined in §3.8. There
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are now two possibilities. On one hand, suppose that αk+1,w < α0 for some w ∈ Vk+1,I .

Then Vk+1,I projects onto an (1 + 3(1/16)2)−1ρk+1r0 separated set in `k+1,w of diameter

at most 2C∗ρk+1r0 by Lemma 2.1. Hence card Ik+1(I) .C∗ 1 and∑
J∈Ek+1(I)∪Bk+1(I)

(diam fk+1(J))s +
∑

J∈Nk+1(I)
(k+1,J)∈Pk+1

pk+1,J .s,C∗,ξ2 ρ
s
k+1r

s
0 .s,C∗,ξ2 ρ

s
kr
s
0.

On the other hand, suppose that αk+1,w ≥ α0 for all w ∈ Vk+1,I . Then∑
J∈Ek+1(I)∪Bk+1(I)

(diam fk+1(J))s +
∑

J∈Nk+1(I)
(k+1,J)∈Pk+1

pk+1,J .s,C∗,ξ2
∑

J∈Nk+1(I)

ρsk+1r
s
0.

Because the sets Vk+1,I for different I ∈ Nk are pairwise disjoint (see §3.8), summing over

all such I yields (4.3).

Estimate 2. We estimate the new phantom masses and new intervals coming from some

I ∈ Nk such that αk,fk(I) < α0 and Ik+1(I) ⊂ ∂T . In particular, we show that∑
(k+1,I)∈E2

(diam fk+1(I))s +
∑

(k+1,I)∈P2

pk+1,I

≤
∑

(k,I)∈Pk∩∂p(T )

pk,I +
1

6

∑
(k+1,I)∈B∗1

(diam fk+1(I))s.
(E2)

This estimate is responsible for the choice of the constant 14A∗ appearing in the definition

of Flat(k), and thus, for the constant 30A∗ appearing in the definition of αk,v. Inequality

(E2) is equivalent to

∑
I∈Nk

{k+1}×Nk+1(I)⊂∂T
αk,fk(I)<α0

 ∑
J∈Ek+1(I)

(diam fk+1(I))s +
∑

J∈Nk+1(I)
(k+1,J)∈Pk+1

pk+1,J


≤

∑
I∈Nk

{k+1}×Nk+1(I)⊂∂T
αk,fk(I)<α0

pk,I +
1

6

∑
(k+1,I′)∈B∗1

(diam fk+1(I))s.

(4.4)

To prove (4.4) fix I ∈ Nk such that {k+ 1}×Nk+1(I) ⊂ ∂T and αk,fk(I) < α0. There are

nine cases (1a, 1b, 2a, 2b, 2c, 2d, 3a, 3b, 3c). We sincerely apologize to the reader.

For the first four cases (1a, 1b, 2a, 2b), we show that

(4.5)
∑

J∈Ek+1(I)

(diam fk+1(J))s +
∑

J∈Nk+1(I)
(k+1,J)∈Pk+1

pk+1,J ≤ pk,I .

Case 1. Suppose fk(I) is 2-sided terminal in Vk.
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Case 1a. If Nk+1(I) = {I}, then fk+1(I) is 2-sided terminal in Vk+1, Ek+1(I) = ∅
and the new phantom mass pk+1,I = 2Pρsk+1r

s
0 is dominated by the old phantom mass

pk,I = 2Pρskr
s
0. Hence (4.5) holds.

Case 1b. Assume that Nk+1(I) contains at least two elements (see Figure 2 above). In

this case, at most two elements of Nk+1(I) map to 1-sided terminal vertices in Vk+1. By

Lemma 4.6,

pk+1,J1 + pk+1,J2 +
∑

J∈Ik+1(I)

(diam fk+1(J))s ≤ 2Pρsk+1r
s
0 + 4(1.1C∗)sρsk+1r

s
0

≤ 2Pρskr
s
0 = pk,I ,

because P was chosen to be sufficiently large such that

[P + 2(1.1C∗)s]ξs2 ≤ P.

Thus, (4.5) holds in this case, as well.

Case 2. Suppose that fk(I) is 1-sided terminal in Vk. Let (v1, v
′) be the unique element

in Flat(k) with v1 = fk(I) and let v2 be the first vertex in Vk+1 between v1 and v′ in the

direction going from v1 to v′. By property (P7), we can find an interval L in Ek such that

fk(L) = (v1, v
′) and I∩L 6= ∅. Let K be an interval in Ik+1(L) such that fk(K) = (v1, v2).

There will be four cases, depending on whether Nk+1(I) contains one or more elements

and whether K belongs to Ek+1(L) or Bk+1(L).

Case 2a. Suppose that Nk+1(I) = {I} and K ∈ Ek+1(L). Then fk+1(I) is 1-sided

terminal in Vk+1, Ek+1(I) = ∅, and the new phantom mass pk+1,I = Pρsk+1r
s
0 is dominated

by the old phantom mass pk,I = Pρskr
s
0. Hence (4.5) holds.

Case 2b. Suppose that Nk+1(I) contains at least two elements (see Figure 2 above) and

K ∈ Ek+1(L). Then at most one element of Nk+1(K) maps to a 1-sided terminal vertex

in Vk+1. By Lemma 4.6,

pk+1,J1 +
∑

J∈Ik+1(I)

(diam fk+1(J))s ≤ Pρsk+1r
s
0 + 2(1.1C∗)sρsk+1r

s
0

≤ Pρskr
s
0 = pk,I ,

because P was chosen to be sufficiently large such that

[P + 2(1.1C∗)s]ξs2 ≤ P.

Thus, (4.5) holds, once again.

Case 2c. Suppose that Nk+1(I) = {I} and K ∈ Bk+1(L). Then fk+1(I) is 2-sided

terminal in Vk+1 and Ek+1(I) = ∅. The new phantom mass that must be paid for is

pk+1,I = 2Pρsk+1r
s
0. In this case, we pay for one half of pk+1,I with pk,I = Pρskr

s
0 and use

Lemma 4.7 to pay for the other half of pk+1,I with 1
6
(diam fk+1(K))s, where K ∈ B∗k+1(T ).

That is,

pk+1,I ≤ pk,I +
1

6
(diam fk+1(K))s.
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Case 2d. Suppose that Nk+1(I) contains at least two points and K ∈ Bk+1(L). Then

fk+1(I) is 1-sided terminal in Vk+1, Ek+1(I) is nonempty, and up to one of the new vertices

drawn could be 1-sided terminal in Vk+1, as well. In this case,

pk+1,I + pk+1,J1 +
∑

J∈Ek+1(I)

(diam fk+1(J))s

︸ ︷︷ ︸
≤ 1

6
(diam fk+1(K))s + pk,I .

by Lemma 4.7, Lemma 4.6, and the choice of P .

Case 3. Suppose fk(I) is not terminal in Vk. Then Ek+1(I) = ∅. It remains to pay for

pk+1,I as needed. Let L1, L2, K1, and K2 be defined by analogy with L and K from Case

2, but corresponding to the two distinct flat pairs (fk(I), v′) and (fk(I), v′′). There are

three cases, depending on whether K1 and K2 both edge intervals, one of K1 or K2 is an

edge interval and the other is a bridge interval, or both K1 and K2 are bridge intervals.

Case 3a. Suppose that K1 belongs to Ek+1(L1) and K2 belongs to Ek+1(L2). Then

fk+1(I) is non-terminal in Vk+1. Hence (k+ 1, I) 6∈Pk+1 and both sides of (4.5) are zero.

In other words, there is nothing to pay for in Case 3a.

Case 3b. Suppose that one of K1 or K2 is an edge interval and the other is a bridge

interval, say without loss of generality that K1 ∈ Ek+1(L1) and K2 ∈ Bk+1(L2). Then

fk+1(I) is 1-sided terminal in Vk+1 and pk+1,I = Pρsk+1r
s
0 ≤ 1

6
(diam fk+1(K2))s by Lemma

4.7.

Case 3c. Suppose that K1 belongs to Bk+1(L1) and K2 belongs to Bk+1(L2). Then

fk+1(I) is 2-sided terminal in Vk+1 and

pk+1,I = 2Pρsk+1r
s
0 ≤

1

6
(diam fk+1(K1))s +

1

6
(diam fk+1(K2))s.

Adding up the estimates in the nine cases, we obtain (E2).

Estimate 3. On one hand, (k, I) ∈ B′1 if and only if (k + 1, I) ∈ B4 (see §3.3). When

(k, I) ∈ B′1, we have diam fk(I) = diam fk+1(I). Thus,∑
(k+1,I)∈B4

(diam fk+1(I))s =
∑

(k,I)∈B′1

(diam fk(I))s.

On the other hand, when both endpoints of the image of an edge interval are non-flat,

the edge interval becomes a bridge interval and pays for itself (see §3.5):∑
(k+1,I)∈B2

(diam fk+1(I))s =
∑

(k,I)∈E ′1

(diam fk(I))s.

All together, we have

(E3)
∑

(k+1,I)∈B2∪B4

(diam fk+1(I))s =
∑

(k,I)∈E ′1∪B′1

(diam fk(I))s.

Estimate 4. Next, we control the new phantom masses at endpoints of images fk+1(J)

of bridge intervals J ∈ Bk+1(I) coming from some edge interval I ∈ Ek as in §3.4 such
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that the endpoint lies between the endpoints of fk(I). Specifically, we show that∑
(k+1,I)∈P3

pk+1,I ≤
1

6

∑
(k+1,I)∈B∗2

(diam fk+1(I))s.(E4)

Inequality (E4) is equivalent to∑
(k,I)∈E ′2

∑
J∈Nk+1(I)

(k+1,J)∈Pk+1

pk+1,J ≤
1

6

∑
(k+1,I)∈B∗2

(diam fk+1(I))s.(4.6)

To prove (4.6), fix (k, I) ∈ E ′2 and J ∈ Nk+1(I) be such that (k + 1, J) ∈ Pk+1. Then

fk+1(J) lies strictly between the endpoints of fk(I) and fk+1(J) is either 1- or 2-sided

terminal in Vk+1. On one hand, if fk+1(J) is 1-sided terminal, then there exists precisely

one element (k + 1, K) ∈ B∗2 such that fk+1(J) is an endpoint of fk+1(K). In this case,

pk+1,J = Pρsk+1r
s
0 ≤

1

6
(diam fk+1(K))s

by Lemma 4.7. On the other hand, if fk+1(J) is 2-sided terminal, then there exist two

elements (k + 1, K1) and (k + 1, K2) in B∗2 such that fk+1(J) is the common endpoint of

fk+1(K1) and fk+1(K2). In this case,

pk+1,J = 2Pρsk+1r
s
0 ≤

1

6
(diam fk+1(K1))s +

1

6
(diam fk+1(K2))s

by Lemma 4.7.

Remark 4.13. In Estimates 2 and Estimate 4, each endpoint of the image fk+1(I) of

(k + 1, I) ∈ B∗1 ∪ B∗2 is used once and each fk+1(I) has only two endpoints. Hence

1

6

∑
(k+1,I)∈B∗1∪B∗2

(diam fk+1(I))s ≤ 1

6

∑
(k+1,I)∈B ∗∗k+1(T )

=
1

3

∑
(k+1,I)∈B∗k+1(T )

.

Estimate 5. In this final estimate, we deal with new intervals in ∂T coming from an

edge interval in ∂p(T ) which has an endpoint with flat image. We will show that

∑
(k+1,I)∈E3∪B3

(diam fk+1(I))s ≤
∑

(k,I)∈E ′2

(diam fk+1(I))s + (14A∗)s
∑

(v,v′)∈Flat(k)

τs(k, v, v
′)ρskr

s
0.

(E5)

For each I ∈ E ′2, pick an endpoint xI of I such that αk,fk(xI) < α0 and let yI be the other

endpoint of I. Estimate (E5) follows immediately from∑
(k,I)∈E ′2

∑
J∈Ek+1(I)∪Bk+1(I)

(diam fk+1(J))s

≤
∑

(k,I)∈E ′2

((diam fk(I))s + (14A∗)sτs(k, fk(xI), fk(yI)))ρ
s
kr
s
0.

(4.7)
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To show (4.7), fix (k, I) ∈ E ′2 and enumerate Ek+1(I) ∪ Bk+1(I) = {I1, . . . , In}. Let

v = fk(xI) and let v′ = fk(yI). By definition of τs(k, v, v
′) and (P3), we have

n−1∑
i=1

(diam fk+1(Ii))
s ≤ |v − v′|s + τs(k, v, v

′)|v − v′|s

≤ (diam fk(I))s + (14A∗)2τs(k, v, v
′)ρskr

s
0.

Summing over all pairs (k, I) ∈ E ′2, we obtain (4.7).

Adding (E1), (E2), (E3), (E4), and (E5), we arrive at (E). This completes the proof of

Lemma 4.12.

5. Hölder parametrization

In §5.1, we prove the following theorem, which is the paper’s main result. Afterwards,

in §5.2, we derive several corollaries, including Theorem 1.1. In §5.3, we state and prove

a refinement of Theorem 5.1 that gives an essentially 2-to-1 curve. In §5.4, we show that

replacing (5.1) with a Carleson type condition produces an upper Ahlfors regular curve.

Given parameters C∗, ξ1, and ξ2, let α1 be defined by (4.2). That is,

α1 = min

{
1

16
,

(
ξ1(1− ξ2)

42C∗

)1/2
}
.

Theorem 5.1 (Hölder Traveling Salesman with Nets). Assume that X = l2(R) or X =

RN for some N ≥ 2. Let s ≥ 1, let V = (Vk, ρk)k≥0 be a sequence of finite sets Vk in X

and numbers ρk > 0 that satisfy properties (V0)–(V5) defined in §2.2. If α0 ∈ (0, α1] and

(5.1) SsV :=
∞∑
k=0

∑
(v,v′)∈Flat(k)

τs(k, v, v
′)ρsk +

∞∑
k=0

∑
v∈Vk

αk,v≥α0

ρsk <∞,

then there exists a (1/s)-Hölder map f : [0, 1]→ X such that f([0, 1]) ⊃
⋃
k≥0 Vk and the

Hölder constant of f satisfies H .s,C∗,ξ1,ξ2 r0(1 + SsV ).

5.1. Proof of Theorem 5.1. In this subsection, w will always denote a finite word in

the alphabet N = {1, 2, . . . }, including the empty word ∅. We denote the length of a word

w by |w|.
The conclusion holds trivially if

⋃
k≥0 Vk is a singleton. Thus, in addition to SsV < ∞,

we may assume that
⋃
k≥0 Vk contains at least two points. Because α0 ≤ α1, Proposition

4.11 gives

(5.2) 0 <Ms([0, 1]) .s,C∗,ξ2 r
s
0(1 + SsV ) <∞.

To proceed, we start by renaming the intervals in {[0, 1]} ∪I . Denote ∆∅ = [0, 1] and

write I0 = {∆1, . . . ,∆n∅}, enumerated according to the orientation of [0, 1]. Inductively,

suppose that for some word w with |w| = k, we have defined ∆w ∈ Ik. Suppose also that

Ik+1(∆w) = {J1, . . . , Jnw},
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enumerated according to the orientation of [0, 1]. Then for each i ∈ {1, . . . , nw}, denote

∆wi = Ji. Denote byW the set of all finite words with letters from N for which an interval

∆w has been defined.

Next, we use the masses of intervals defined in §4 to modify the length of intervals ∆w.

Define ∆′∅ = [0, 1]. Let {∆′1, . . . ,∆′n∅} be a partition of ∆′∅, enumerated according to the

orientation of [0, 1], satisfying

(1) ∆′i is open (resp. closed) if and only if ∆i is open (resp. closed), and

(2) diam ∆′i =Ms(0,∆i)/Ms([0, 1]).

These intervals exist, becauseMs([0, 1]) =
∑n∅

i=1Ms(0,∆i). Inductively, suppose that an

interval ∆′w ⊂ [0, 1] has been defined for some w ∈ W such that

diam ∆′w ≥
Ms(|w| − 1,∆w)

Ms([0, 1])

and ∆′w is open (resp. closed) if and only if ∆w is open (resp. closed). Let {∆′w1, . . . ,∆
′
wnw
}

be a partition of ∆′w, enumerated according to the orientation of [0, 1], satisfying

(1) ∆′wi is open (resp. closed) if and only if ∆wi is open (resp. closed), and

(2) diam ∆′wi ≥Ms(|w|,∆wi)/Ms([0, 1]).

This partition exists by Lemma 4.3(3).

Define the family

E ′k = {∆′w : ∆w ∈ Ek}
and similarly define the families B′k, N ′

k , F ′
k, and I ′

k. For each k ≥ 0, define a continuous

map Fk : [0, 1]→ X by

Fk|∆′w = (fk|∆w) ◦ φw for all w ∈ W ,

where φw is the unique increasing affine homeomorphism mapping ∆′w onto ∆w when ∆′w
is nondegenerate and φw maps to any point in ∆w when ∆′w is a singleton. (The latter

possibility occurs only when ∆′w belongs to F ′
k or N ′

k .)

We now prove two auxiliary results for the sequence (Fk)k≥0.

Lemma 5.2. For all k ≥ 0 and x ∈ [0, 1], we have |Fk+1(x)− Fk(x)| ≤ 30A∗ξ2r0ρk.

Proof. Fix x ∈ [0, 1] and w ∈ W such that x ∈ ∆w and |w| = k. Let also i ∈ {1, . . . , nw}
be such that x ∈ ∆′wi.

If ∆′w ∈ B′k, then ∆′w = ∆′wi, ∆w = ∆wi, and Fk|∆′w = Fk+1|∆′wi. We conclude that

|Fk+1(x)− Fk(x)| = 0.

If ∆′w ∈ F ′
k, then ∆′w = ∆′wi = {x}, and Fk(x) = Fk+1(x). Hence |Fk+1(x)−Fk(x)| = 0.

If ∆′w ∈ E ′k, then |Fk+1(x)− Fk(x)| ≤ 2 diamFk(∆
′
w) = 2 diam fk(∆w) ≤ 28A∗ρk+1r0.

If ∆′w ∈ N ′
k , then |Fk+1(x) − Fk(x)| ≤ 2 diam fk(∆w) ≤ diam Ṽk+1,I ≤ 30A∗ρk+1r0,

where Ṽk+1,I is a set defined in §3.8. �

Lemma 5.3. For all k ≥ 0 and x, y ∈ [0, 1],

|Fk(x)− Fk(y)| ≤ Ms([0, 1])r1−s
0 ρ1−s

k |x− y| .s,C∗,ξ2 r0(1 + SsV )ρ1−s
k |x− y|.
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Proof. Fix k ≥ 0 and x, y ∈ [0, 1]. Without loss of generality, we may assume that x < y.

We consider three cases. In the first two cases, the points x and y belong to the same

interval ∆′w, |w| = k, while in the third case they belong to different intervals.

Case 1. If x, y ∈ ∆′w ∈ N ′
k ∪F ′

k, then |Fk(x) − Fk(y)| = 0|x − y|, because the map

Fk|∆′w is constant.

Case 2. Suppose that x, y ∈ ∆′w ∈ E ′k ∪B′k. Since Fk|∆′w is affine,

|Fk(x)− Fk(y)| ≤ Ms([0, 1])
diam fk(∆w)

Ms(|w| − 1,∆w)
|x− y|

≤ Ms([0, 1]) diam fk(∆w)1−s|x− y|
≤ Ms([0, 1])r1−s

0 ρ1−s
k |x− y|,

by (V3) and the assumption s ≥ 1. Thus, by (5.2),

|Fk(x)− Fk(y)| .s,C∗,ξ2 r0(1 + SsV )ρ1−s
k |x− y|.

Case 3. Suppose that x ∈ ∆′w and y ∈ ∆′u for some ∆′w,∆
′
u ∈ I ′

k with ∆′w ∩∆′u = ∅.
By the preceding cases and the Fundamental Theorem of Calculus,

|Fk(x)−Fk(y)| ≤
∫ y

x

|∇Fk(t)| dt ≤Ms([0, 1])r1−s
0 ρ1−s

k |x−y| .s,C∗,ξ2 r0(1+SsV )ρ1−s
k |x−y|.

�

We are now ready to prove Theorem 5.1.

Proof of Theorem 5.1. Define F : [0, 1]→ X pointwise by

F (x) := F0(x) +
∞∑
k=0

(Fk+1(x)− Fk(x)).

By Lemma 5.2, F is well defined and continuous in all [0, 1]. By Lemma 5.2, Lemma 5.3,

and Lemma B.1 from the appendix, F is (1/s)-Hölder continuous with Hölder constant

H ≤ 1

ξ1

(
Ms([0, 1])r1−s

0 + 60A∗r0
ξ2

1− ξ2

)
.s,C∗,ξ1,ξ2 r0(1 + SsV ).

Finally, for any integer k ≥ 0 and any integer m ≥ k, we have Vk ⊂ Fm([0, 1]). Therefore,

Vk ⊂ F ([0, 1]) for all integers k ≥ 0. �

5.2. Corollaries to Theorem 5.1 and Proof of Theorem 1.1.

Corollary 5.4 (tube approximation). For all s > 1, C∗ ≥ 1, and 0 < ξ1 < ξ2 < 1,

there exists α∗ > 0 with the following property. Assume that X = l2(R) or X = RN for

some N ≥ 2. Let V = (Vk, ρk)k≥0 be a sequence of finite sets in X and numbers ρk > 0

satisfying properties (V0)–(V5) of §2.2 with constants C∗, ξ1, and ξ2. If

Ss,+V :=
∞∑
k=0

∑
v∈Vk

αk,v≥α∗

ρsk <∞,
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then there exists a (1/s)-Hölder map f : [0, 1]→ X such that
⋃
k≥0 Vk ⊂ f([0, 1]) and the

Hölder constant of f satisfies H .s,C∗,ξ1,ξ2 r0(1 + Ss,+V ).

Proof. By Lemma 2.8, there exists εs,C∗,ξ1,ξ2 ∈ (0, 1/16] such that if k ≥ 0, v ∈ Vk, and

αk,v ≤ εs,C∗,ξ,ξ2 , then τs(k, v, v
′) = 0 for all (v, v′) ∈ Flat(k). Set α∗ = min{εs,C∗,ξ1,ξ2 , α1}

(a careful inspection shows εs,C∗,ξ1,ξ2 is strictly smaller than α1). Thus, with α0 = α∗,
∞∑
k=0

∑
(v,v′)∈Flat(k)

τs(k, v, v
′)ρsk +

∞∑
k=0

∑
v∈Vk

αk,v≥α∗

ρsk =
∞∑
k=0

∑
v∈Vk

αk,v≥α∗

ρsk <∞.

The conclusion follows immediately by Theorem 5.1. �

Corollary 5.5. Alternatively, if

Ss,pV :=
∞∑
k=0

∑
v∈Vk

αpk,v ρ
s
k <∞ for some p > 0,

then there exists a (1/s)-Hölder map f : [0, 1]→ X such that
⋃
k≥0 Vk ⊂ f([0, 1]) and the

Hölder constant of f satisfies H .s,C∗,ξ1,ξ2 r0(1 + (α∗)−pSs,pV ).

Proof. Inspecting the definitions of the two sums, Ss,+V ≤ (α∗)−pSs,pV . �

We now turn to the proof of Theorem 1.1.

Remark 5.6. For all x ∈ RN and r > 0, a minimal dyadic cube Q in RN such that x ∈ Q
and 3Q contains B(x, r) satisfies diam 3Q ≤ Cr for some C = C(N) > 0.

Proof of Theorem 1.1. Let N ≥ 2 and s > 1 be given. Fix β0 > 0 to be specified below.

Assume that E ⊂ RN is a bounded set such that

Ss,+E =
∑

Q∈∆(RN )

βE(3Q)≥β0

(diamQ)s <∞.

Pick any x0 ∈ E and set r0 = diamE. Define V0 = {x0}. Assume that Vk has been

defined for some k. Choose a maximal 2−(k+1)-separated set in E such that Vk+1 ⊃ Vk.

Then the sequence V = (Vk, 2
−k)k≥0 satisfies conditions (V0)–(V4) in §2.2 with C∗ = 2

and ξ1 = ξ2 = 1/2. Note that

A∗ =
C∗

1− ξ2

= 4, 30A∗ = 120.

For all k ≥ 0 and v ∈ Vk, let Qk,v be a minimal dyadic cube such that v ∈ Qk,v and 3Qk,v

contains B(v, 120 · 2−kr0) and choose `k,v be a line such that

sup
x∈E∩3Q

dist(x, `k,v) = βE(3Q) diam 3Q.

Then, by Remark 5.6, there exists C = C(N) > 0 such that

αk,v :=
1

2−k+1r0

sup
x∈Vk+1∩B(v,120·2−kr0)

dist(x, `k,v) ≤
diam 3Q

2−k+1r0

βE(3Q) ≤ 240CβE(3Q).
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We now specify that β0 = α∗/240C, where α∗ is the constant from Corollary 5.4 and C

the constant from Remark 5.6. Because each dyadic cube Q in RN is associated to some

(k, v) at most C(n) times, it follows that

Ss,+V .N r−s0 Ss,+E <∞.

Therefore, by Corollary 5.4, there exists a (1/s)-Hölder m fap f : [0, 1] → RN such that⋃
k≥0 Vk ⊂ f([0, 1]) and the Hölder constant of f satisfies

H .N,s r0(1 + Ss,+V ) .N,s diamE +
Ss,+E

(diamE)s−1
.

Because
⋃
k≥0 Vk is dense in E, the curve f([0, 1]) also contains the set E. �

5.3. A refinement of Theorem 5.1. The parameterization in Theorem 5.1 can be made

in such a way so that the sequence of maps Fk obtained are essentially 2-to-1 in the sense

of the following proposition.

Proposition 5.7. Let V = (Vk, ρk)k≥0 and α0 satisfy the hypothesis of Theorem 5.1 and

let x0 ∈ V0. There exists a sequence of piecewise linear maps Fk : [0, 1] → X with the

following properties.

(1) For all k ≥ 0, Fk(0) = x0 = Fk(1).

(2) For all k ≥ 0, there exists Gk ⊂ [0, 1] such that Fk|Gk is 2-1 and Fk([0, 1] \Gk) is

a finite set.

(3) For all k ≥ 0, Fk([0, 1]) ⊃ Vk; for all x ∈ Vk+1, dist(x, Fk([0, 1])) ≤ C∗ρk+1r0.

(4) For all k ≥ 0, ‖Fk − Fk+1‖∞ .C∗,ξ2 ρk+1r0.

(5) For all k ≥ 0, the map Fk is Lipschitz with Lip(Fk) .s,C∗,ξ1,ξ2 r0(1 + SsV )ρ1−s
k .

The maps Fk converge uniformly to a (1/s)-Hölder map F : [0, 1] → X whose image

contains
⋃
k≥0 Vk, the parameterization F starts and ends at x0 in the sense of (1), and

the Hölder constant of F satisfies H .s,C∗,ξ1,ξ2 r0(1 + SsV ).

Proof. Following the algorithm of §3, we construct for each k ≥ 0, four families Ek, Bk, Fk,

Nk of intervals in [0, 1] and a continuous piecewise linear map fk : [0, 1]→ X that satisfy

(P1)–(P7). In Step 0, we may assume that f0(0) = f0(1) = x0. Thus, fk(0) = fk(1) = x0

for all k ≥ 0. Moreover, for all x ∈ Vk+1,

dist(x, Fk([0, 1])) ≤ dist(x, Vk) < C∗r0ρk+1

by (V4). From the construction, ‖fk − fk+1‖∞ .A∗ ρk+1r0. Hence ‖fk − fk+1‖∞ .C∗,ξ2
ρk+1r0. We have shown that the maps fk satisfy properties (1), (3) and (4).

As for property (2), we already know from (P4) that fk|
⋃

Ek is 2-to-1. We proceed to

modify fk on each I ∈ Bk. From the algorithm in §3, recall that for each I ∈ Bk, there

exists unique I ′ ∈ Bk, I
′ 6= I such that fk(I) = fk(I

′). Enumerate

Bk = {I1, I
′
1, . . . , Il, I

′
l},

where fk(Ij) = fk(I
′
j). Starting with I1 = (a1, b1), define f̃k|I1 so that
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(a) f̃k|I1 is piecewise linear and continuous, f̃k(a1) = fk(a1) and f̃k(b1) = fk(b1);

(b) H1(f̃k(I1)) ≤ |fk(a1)− fk(b1)|+ ρkr0;

(c) f̃k(I1) ∩
⋃
I∈Ek

fk(I) is a finite set.

Let ψ1 : I ′1 → I1 be the unique orientation-reversing linear map from I ′1 onto I1. Then

define f̃k|I ′1 = (f̃k|I1) ◦ ψ1. For induction, assume that we have defined f̃k on

I1, I
′
1, . . . , Ir−1, I

′
r−1.

Define f̃k|Ir as with I1, only this time we require that the set

f̃k(Ir) ∩

(
r−1⋃
i=1

f̃k(Ii) ∪
r−1⋃
i=1

f̃k(I
′
i) ∪

⋃
I∈Ek

fk(I)

)
be finite. Let ψr : I ′r → Ir be the unique orientation-reversing linear map from I ′r onto Ir
and define f̃k|I ′r = (f̃k|Ir) ◦ψr. Extending f̃k|I = fk|I for all I ∈ Ek ∪Nk ∪Fk, we obtain

a sequence f̃k of maps that satisfy properties (1)–(4).

The rest of the proof is similar to that of Theorem 5.1 and we only sketch the steps.

Define the Ms for each I ∈ Ik and define the collections of intervals {∆w} and {∆′w}.
For each w, let φw : ∆′w → ∆w be the unique affine homeomorphism from ∆′w onto ∆w

and let Fk|∆′w = (f̃k|∆w) ◦ φw. Although the maps fk are different from f̃k, we have by

(b) that diam fk(I) 'ξ2 diam f̃k(I) for all k ≥ 0 and all I ∈ Ik. Thus, Lemma 5.2 and

Lemma 5.3 still hold with constants depending at most on s, C∗, ξ1 and ξ2. Therefore,

the maps Fk satisfy properties (1)–(5). �

5.4. A Carleson condition for an upper Ahlfors s-regular curve. Replacing (5.1)

in the main theorem with a Carleson-type condition ensures that the Hölder curve is

upper Ahlfors regular. This answers a question posed to us by T. Orponen.

Theorem 5.8. Assume that X = l2(R) or X = RN for some N ≥ 2. Let s ≥ 1, let

V = ((Vk, ρk))k≥0 be a sequence of finite sets Vk in X and numbers ρk > 0 that satisfy

properties (V0)–(V4) defined in §2.2. Let Λ ≥ C∗ and Λ∗ := Λ/(1− ξ2). Suppose for all

k ≥ 0 and v ∈ Vk+1, we are given a line `k,v and αk,v ≥ 0 such that

(Ṽ5) sup
x∈Vk+1∩B(v,30Λ∗ρkr0)

dist(x, `) ≤ αk,vρk+1.

If Λ�ξ1,ξ2 C
∗, α0 ∈ (0, α1], and there exists M <∞ such that for all j ≥ 0 and w ∈ Vj,

(5.3) SsV (j, w) :=
∞∑
k=j

∑
(v,v′)∈Flat(k)

v,v′∈B(w,Λρjr0)

τs(k, v, v
′)ρsk +

∞∑
k=j

∑
v∈Vk

αk,v≥α0

v∈B(w,Λρjr0)

ρsk ≤Mρsj ,

then there exists a (1/s)-Hölder map f : [0, 1]→ X such that f([0, 1]) ⊃
⋃
k≥0 Vk and the

curve f([0, 1]) is upper Ahlfors s-regular with constant depending on at most s, C∗, ξ1,

ξ2, and M .
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Proof. By (V0) and (V4), excess (
⋃∞
k=1 Vk, V0) ≤ ρ1r0 + ρ2r0 + · · · = r0

1−ξ2 ≤ A∗r0, where

excess(A,B) = sup
x∈A

inf
y∈B
|x− y|

whenever A and B are nonempty sets in X. Hence
⋃∞
k=0 Vk ⊂ B(x0, 2A

∗r0) by (V1).

Thus, there exists a (1/s)-Hölder map f : [0, 1] → X such that Γ := f([0, 1]) ⊃
⋃∞
k=0 Vk

and the Hölder constant of f satisfies Hf .s,C∗,ξ1,ξ2 r0(1 + M) by Theorem 5.1, since

SsV = SsV (0, w) ≤M . In particular,

Hs(Γ) ≤ Hs
f H1([0, 1]) .s,C∗,ξ1,ξ2,M rs0.

Let x ∈ Γ and let 0 < r ≤ diam Γ. Because
⋃∞
k=0 Vk ⊂ B(x0, 2A

∗r0), we have diam Γ ≤
4A∗r0. If r ≥ r0, then

Hs(Γ ∩B(x, r)) ≤ Hs(Γ) .s,C∗,ξ1,ξ2,M rs0 .s,C∗,ξ1,ξ2,M rs.

Otherwise, 0 < r < r0, say ρj+1r0 ≤ r < ρjr0 for some integer j ≥ 0.

Choose w ∈ Vj such that |w − x| = dist(x, Vj). By Lemma 5.2, (V0), and (V4),

dist(x, fj([0, 1])) ≤ 30ξ2

1− ξ2

A∗ρjr0.

Because α0 ≤ α1, the longest line segment drawn between vertices in Vj has length at

most 14A∗ρk−1r0. By (V0), it follows that

excess(fj([0, 1]), Vj) ≤
7

ξ1

A∗ρjr0.

Thus, dist(x, Vj) .ξ1,ξ2 A
∗ρjr0 �ξ1,ξ2 Λρjr0. For all k ≥ 0, define

ρ̃k :=
ρj+k
ρj

.

Define Ṽ0 := Vj ∩B(w,Λρjr0). Then, for each k ≥ 1, recursively define Ṽk to be set of all

x ∈ Vj+k ∩ B(w,Λρjr0) such that dist(x, Ṽk−1) ≤ Λρj+kr0. Then Ṽ = (Ṽk, ρ̃k)k≥0 satisfy

(V0)–(V4) with respect to x̃0 = w and r̃0 = ρjr0, C̃∗ = Λ, ξ̃1 = ξ1, and ξ̃2 = ξ2. For all

k ≥ 0 and v ∈ Ṽk, assign ˜̀k,v := `j+k,v and α̃k,v = αj+k,v. Then Ṽ satisfies (V5) with

respect to ˜̀k,v and α̃k,v by (Ṽ5). Moreover, by (5.3),

Ss
Ṽ

=
∞∑
k=0

∑
(v,v′)∈F̃lat(k)

τ̃(k, v, v′)ρ̃k
s +

∞∑
k=0

∑
v∈Ṽk

α̃k,v≥α0

ρ̃k
s =

SV (j, w)

ρsj
≤M.

Thus, by Theorem 5.1, there is a (1/s)-Hölder map g with Hölder constant Hg .s,Λ,ξ1,ξ2
r̃0(1 +M) such that g([0, 1]) contains

⋃
k≥0 Ṽk. Because the algorithm in §3 works locally

in the image, dist(x, Vj) .ξ1,ξ2 A
∗ρjr0 �ξ1,ξ2 Λρjr0, and r < ρjr0, we can guarantee that

g([0, 1]) contains f([0, 1]) ∩B(x, r) provided that Λ is sufficiently large. Therefore,

Hs(Γ ∩B(x, r)) ≤ Hs
g H1([0, 1]) .s,Λ,ξ1,ξ2, r̃0(1 +M) .s,C∗,ξ1,ξ2,M (ρjr0)s .s,C∗,ξ1,ξ2,M rs,

where the final inequality holds because ρj+1r0 ≤ r. �
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6. Lipschitz parameterization

Using the method above, we obtain the following refinement of the sufficient half of the

Analyst’s TST in Hilbert space, which is originally due to Jones [Jon90] in the Euclidean

case and due to Schul [Sch07b] in the infinite-dimensional case.

Proposition 6.1 (Sufficient half of the Analyst’s Traveling Salesman with Nets). Assume

that X = l2(R) or X = RN for some N ≥ 2. Let V = (Vk, ρk)k≥0 be a sequence of finite

sets Vk in X and numbers ρk > 0 that satisfy properties (V0)–(V5) defined in §2.2. If

(6.1) SV :=
∞∑
k=0

∑
v∈Vk

α2
k,vρk <∞,

then for every x0 ∈ V0, we can find a sequence of piecewise linear maps Fk : [0, 1] → X

with the following properties.

(1) For all k ≥ 0, Fk(0) = x0 = Fk(1).

(2) For all k ≥ 0, there exists Gk ⊂ [0, 1] such that Fk|Gk is 2-1 and Fk([0, 1] \Gk) is

a finite set.

(3) For all k ≥ 0, Fk([0, 1]) ⊃ Vk; for all x ∈ Vk+1, dist(x, Fk([0, 1])) ≤ C∗ρk+1r0.

(4) For all k ≥ 0, ‖Fk − Fk+1‖∞ .C∗,ξ2 ρk+1r0.

(5) For all k ≥ 0, the map Fk is Lipschitz with Lip(Fk) .C∗,ξ1,ξ2 r0(1 + SV ).

The maps Fk converge uniformly to a Lipschitz map F : [0, 1]→ X whose image contains⋃
k≥0 Vk, the parameterization F starts and ends at x0 in the sense of (1), and the Lipschitz

constant of F satisfies L .C∗,ξ1,ξ2 r0(1 + SV ).

Proof. Let α0 = α1 (see (4.2)), which depends only on C∗, ξ1, and ξ2. If (v, v′) ∈ Flat(k),

then τ1(k, v, v′) ≤ 3α2
k,v by Lemma 2.7. Thus, by definition of S1

V (see Theorem 5.1),

S1
V =

∞∑
k=0

∑
(v,v′)∈Flat(k)

τ1(k, v, v′)ρk +
∞∑
k=0

∑
v∈Vk

αk,v≥α0

ρk

≤ 6
∞∑
k=0

∑
v∈Vk

αk,v<α0

α2
k,vρk +

1

α2
0

∞∑
k=0

∑
v∈Vk

αk,v≥α0

α2
k,vρk ≤

1

α2
0

SV .

The conclusion now follows from Proposition 5.7. �

Part II. Applications and Further Results

In §7, we give an application of the Hölder Traveling Salesman theorem to the geometry

of measures. In particular, we obtain sufficient conditions for a pointwise doubling measure

in RN to be carried by (1/s)-Hölder curves, s > 1. This extends the work [BS15, BS17]

by the first author and Schul, which characterizes 1-rectifiable Radon measures in RN

in terms of geometric square functions. In §8, we use the method of Part I to obtain

a Ważewski type theorem for flat continua, which we described above in §1.3. Finally,
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in §9, we present examples of Hölder curves and of sets that are not contained in any

Hölder curve to highlight the rich geometry of sets in RN and illustrate the strengths and

limitations of our principal results.

7. Fractional rectifiability of measures

One goal of geometric measure theory is to understand the structure of a measure

in RN through its interaction with families of lower dimensional sets. For an extended

introduction, see the survey [Bad19] by the first author. In this section, we use the Hölder

Traveling Salesman theorem to establish criteria for fractional rectifiability of pointwise

doubling measures in terms of Lp Jones beta numbers. In particular, we extend part of

the recent work of the first author and Schul [BS17] on measures carried by rectifiable

curves to measures carried by Hölder curves (see Theorem 7.5). The study of fractional

(that is, non-integer dimensional) rectifiability of measures was first proposed by Mart́ın

and Mattila [MM93, MM00] and examined further by the first and third author [BV18].

7.1. Generalized rectifiability. Let A be a nonempty family of Borel sets in RN and

let µ be a Borel measure on RN . We say that µ is carried by A if there exists a sequence

(Ai)
∞
i=1 of sets in A such that µ(RN \

⋃
iAi) = 0. At the other extreme, we say that

µ is singular to A if µ(A) = 0 for all A ∈ A. If µ is σ-finite, then µ can be uniquely

written as the sum of a Borel measure µA carried by A and a Borel measure µ⊥A singular

to A (e.g. see the appendix of [BV18]). These definitions encode several commonly used

notions of rectifiability of measures (see [Bad19]).

Let 1 ≤ m ≤ N − 1. Let A denote the family of Lipschitz images of [0, 1]m in RN .

We say that a Borel measure µ is m-rectifiable if µ is carried by A; we say that µ is

purely m-unrectifiable if µ is singular to A. A Borel set E ⊂ Rn with 0 < Hm(E) < ∞
is called m-rectifiable or purely m-unrectifiable if Hm E, the m-dimensional Hausdorff

measure restricted to E, has that property. The classes of 1-rectifiable sets and purely

1-unrectifiable sets are also called Besicovitch regular sets and Besicovitch irregular sets,

respectively, in reference to the pioneering investigations by Besicovitch [Bes28, Bes38]

into the geometry of 1-sets in the plane.

Example 7.1. Let Γ1,Γ2, . . . be a sequence of rectifiable curves in RN and let a1, a2, . . .

be a sequence of positive weights. Then the measure µ =
∑

i aiH1 Γi is 1-rectifiable.

Note that if the closure of
⋃
i Γi is RN and the weights are chosen so that

∑
i aiH1(Γi) = 1,

we get a 1-rectifiable Borel probability measure µ whose support is RN .

Example 7.2. Let C ⊂ R be the middle halves Cantor set (formed by replacing [0, 1]

with [0, 1
4
] ∪ [3

4
, 1] at iterating). Then E = C × C ⊂ R2 is a Cantor set of Hausdorff

dimension one, 0 < H1(E) <∞, E is Ahlfors 1-regular in the sense that

H1(E ∩B(x, r)) ' r for all x ∈ E and 0 < r ≤ diamE,

and E is Besicovitch irregular (e.g. see [MM93]). In particular, the set E is compact and

measure-theoretically one-dimensional, but E is not contained in any rectifiable curve.
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7.2. Lp Jones beta numbers and rectifiability. Let µ be a Radon measure on RN ,

that is, a locally finite Borel regular measure, let 1 ≤ m ≤ N − 1, let p > 0, let x ∈ RN ,

let r > 0, and let L be an m-dimensional affine subspace of RN . We define

(7.1) β(m)
p (µ, x, r, L) :=

(∫
B(x,r)

(
dist(z, L)

r

)p
dµ(z)

µ(B(x, r))

)1/p

,

(7.2) β(m)
p (µ, x, r) := inf

L
β(m)
p (µ, x, r, L),

where the infimum is taken over all m-planes L in RN . The quantity β
(m)
p (µ, x, r) is called

the m-dimensional Lp Jones beta number of µ in B(x, r). The Lp Jones beta numbers

were introduced by David and Semmes [DS91, DS93] to study quantitative rectifiability

of Ahlfors regular sets and boundedness of singular integral operators. The normalization

of the measure in (7.1) that we have chosen (i.e. dividing by µ(B(x, r))) ensures that

β
(m)
p (µ, x, r) ∈ [0, 1] and β

(m)
p is invariant under dilations Tλ(z) = λz in the sense that

(7.3) β(m)
p (µ, x, r) = β(m)

p (Tλ[µ], λx, λr), Tλ[µ](E) = µ(λ−1E)

for all µ, x ∈ RN , r > 0, and λ > 0. By monotonicity of the integral,

(7.4) sµ(B(y, s))1/pβ(m)
p (µ, y, s) ≤ rµ(B(x, r))1/pβ(m)

p (µ, x, r) when B(y, s) ⊂ B(x, r).

In a pair of papers, Tolsa [Tol15] and Azzam and Tolsa [AT15] characterize m-rectifiable

Radon measures µ on RN with µ� Hm in terms of L2 Jones beta numbers. The restriction

µ � Hm is equivalent to the upper density bound lim supr↓0 r
−mµ(B(x, r)) < ∞ µ-a.e.

(e.g. see [Mat95, Chapter 6]) and implies that the Hausdorff dimension of the measure

is at least m (see [MMR00]). The proof that (7.6) implies the measure µ is m-rectifiable

uses an intricate stopping time argument in conjunction with David and Toro’s Reifenberg

algorithm for sets with holes [DT12] to construct bi-Lipschitz images of Rm inside RN that

carry µ. For related developments, see [ENV17, Ghi18].

Theorem 7.3 (see [Tol15], [AT15]). Let µ be a Radon measure on RN . Assume that

(7.5) 0 < lim sup
r↓0

µ(B(x, r))

rm
<∞ for µ-a.e. x ∈ RN .

Then µ is m-rectifiable if and only if

(7.6)

∫ 1

0

β
(m)
2 (µ, x, r)2 µ(B(x, r))

rm
dr

r
<∞ for µ-a.e. x ∈ RN .

In [BS17], the first author and Schul characterize 1-rectifiable Radon measure µ on

RN in terms of Lp Jones beta numbers and the lower density lim infr↓0 r
−1µ(B(x, r)).

In contrast with Theorem 7.3, the main theorem in [BS17] does not require an a priori

relationship between the null sets of µ and H1, nor a bound on the Hausdorff dimension of

µ. To lighten the notation, we present Badger and Schul’s theorem for pointwise doubling

measures and refer the reader to [BS17, Theorem A] for the full result. Although the

classes of measures satisfying (7.5) and (7.7) have no direct relationship with each other,
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a posteriori an m-rectifiable measure satisfying (7.5) also satisfies (7.7). The proof that

(7.8) implies the measure µ is 1-rectifiable uses a technical extension of the sufficient half

of the Analyst’s Traveling Salesman theorem. See [BS17, Proposition 3.6].

Theorem 7.4 (see [BS17, Theorem E]). Let µ be a Radon measure on Rn and let p ≥ 1.

Assume that µ is pointwise doubling in the sense that

(7.7) lim sup
r↓0

µ(B(x, 2r))

µ(B(x, r))
<∞ for µ-a.e. x ∈ RN .

Then µ is 1-rectifiable if and only if

(7.8)

∫ 1

0

β(1)
p (µ, x, r)2 r

µ(B(x, r))

dr

r
<∞ for µ-a.e. x ∈ RN .

7.3. Sufficient conditions for fractional rectifiability. The following theorem is an

application of the Hölder Traveling Salesman theorem and generalizes the “sufficient half”

of Theorem 7.4 (also see [BV18, Theorem A]). The exponents p and q in the Hölder case

(s > 1) are less restrictive than in the Lipschitz case (s = 1).

Theorem 7.5. Let µ be a Radon measure on RN , let s > 1, and let p, q > 0. Then

µ

{
x ∈ Rn :

∫ 1

0

β(1)
p (µ, x, r)q

rs

µ(B(x, r))

dr

r
<∞ and lim sup

r↓0

µ(B(x, 2r))

µ(B(x, r))
<∞

}
is carried by (1/s)-Hölder curves.

At the core of the proof of Theorem 7.5 is the following lemma.

Lemma 7.6. Let µ be a Radon measure in RN , and let s > 1 and p, q > 0 be fixed.

Given x0 ∈ RN and parameters M > 0, θ > 0, and P > 0, let A denote the set of points

x ∈ B(x0, 1/2) such that

(7.9)

∫ 1

0

β(1)
p (µ, x, r)q

rs

µ(B(x, r))

dr

r
≤M,

(7.10) µ(B(x, 2r)) ≤ Pµ(B(x, r)) for all r ∈ (0, 1],

and let A′ denote the set of points in A such that

(7.11) µ(A ∩B(x, r)) ≥ θµ(B(x, r)) for all r ∈ (0, 1].

Then A′ is contained in a (1/s)-Hölder curve Γ = f([0, 1]) with Hölder constant depending

on at most N , s, p, q, M , P , θ, and µ(A).

Proof. Let {A′k}k≥0 be a nested sequence of 2−k-nets in A′, so that the sets Vk ≡ A′k
and scales ρk = 2−k satisfy conditions (V0)–(V4) of §2 with parameters r0 = 1, C∗ = 2,

ξ1 = ξ2 = 1/2. Note that

A∗ =
C∗

1− ξ2

= 4 and 30A∗ = 120.
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By (7.9),

Mµ(A) ≥
∫
A

∫ 1

0

β(1)
p (µ, x, r)q

rs

µ(B(x, r))

dr

r
dµ(x)

=
∞∑
k=9

∫ 2−k

2−(k+1)

(512r)s
∫
A

β
(1)
p (µ, x, 512r)q

µ(B(x, 512r))
dµ(x)

dr

r

(7.12)

where in the second line we used the change of variables r 7→ 512r (note 512 = 29) and

Tonelli’s theorem. Now, the open balls {B(y, 2−(k+1)) : y ∈ A′k} are pairwise disjoint,

because the points in A′k are separated by distance at least 2−k. Thus,

(7.13) Mµ(A) ≥
∞∑
k=9

∫ 2−k

2−(k+1)

rs
∑
y∈A′k

∫
A∩B(y,2−(k+1))

β
(1)
p (µ, x, 512r)q

µ(B(x, 512r))
dµ(x)︸ ︷︷ ︸

I(k,y,r)

dr

r
.

Next, we bound I(k, y, r) from below. Fix k ≥ 9, y ∈ A′k, and r ∈ [2−(k+1), 2−k].

Suppose that x ∈ A ∩B(y, 2−(k+1)). Then

(7.14) µ(B(x, 512r)) ≤ P 2µ(B(x, 128r)) ≤ P 2µ(B(y, 129r)) ≤ P 2µ(B(y, 255 · 2−k))

by (7.10). Since B(y, 255 · 2−k) ⊂ B(x, 256 · 2−k) ⊂ B(x, 512r), it follows that

β(1)
p (y, 255 · 2−k) ≤

(
512r

255 · 2−k

)(
µ(B(x, 512r))

µ(B(y, 255 · 2−k))

)1/p

β(1)
p (µ, x, 512r)

≤ 3P 2/pβ(1)
p (µ, x, 512r)

(7.15)

by (7.4). Hence

(7.16) I(k, y, r) ≥ 3−qP−2−2q/pβ
(1)
p (µ, y, 255 · 2−k)q

µ(B(y, 255 · 2−k))

∫
A∩B(y,2−(k+1))

dµ(x).

Invoking doubling again, µ(B(y, 255 · 2−k)) ≤ P 9µ(B(y, 2−(k+1))). Thus, by (7.11),

(7.17)
1

µ(B(y, 255 · 2−k))

∫
A∩B(y,2−(k+1))

dµ(x) ≥ P−9µ(A ∩B(y, 2−(k+1)))

µ(B(y, 2−(k+1)))
≥ P−9θ.

Therefore,

(7.18) I(k, y, r) ≥ 3−qP−11−2q/pθ β(1)
p (µ, y, 255 · 2−k)q

Combining (7.13) and (7.18), we obtain

(7.19) 3qP 11+2q/pθ−1Mµ(A) ≥
∞∑
k=9

(∫ 2−k

2−(k+1)

rs
dr

r

)∑
y∈A′k

β(1)
p (µ, y, 255 · 2−k)q.

In particular, we conclude that

(7.20)
∞∑
k=9

∑
y∈A′k

β(1)
p (µ, y, 255 · 2−k)q 2−ks ≤ s

1− 2−s
3qP 11+2q/pθ−1Mµ(A) <∞
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For each k ≥ 9 and y ∈ A′k, let `k,v be any line such that

(7.21) β(1)
p (µ, y, 255 · 2−k, `k,v) ≤ 2β(1)

p (µ, y, 255 · 2−k).

We will now bound the distance of points in A′k+1 ∩B(y, 120 · 2−k) to `k,v. Fix any point

z ∈ A′k+1 ∩B(y, 120 · 2−k) and let t2−k+1 = dist(z, `k,v). Then

βp(µ, y, 255 · 2−k, `k,v)q ≥

(
1
2
t2−(k+1)

255 · 2−k

)q(
µ(B(z, 1

2
t2−(k+1)))

µ(B(y, 255 · 2−k))

)q/p

≥
(

t

1020

)q
P−(q/p) log2(1920/t) ≥

(
t

1920

)q+(q/p) log2(P )

,

(7.22)

where in the second line we used doubling of µ at z. It follows that

(7.23) αk,v := 2k+1 sup
z∈A′k+1∩B(y,120·2−k)

dist(z, `k,v) ≤ C(p, q, P )βp(µ, y, 255 · 2−k, `k,v)η,

where η[q + (q/p) log2(P )] = q. Therefore, all together,

(7.24)
∞∑
k=9

∑
y∈A′k

α
q+(q/p) log2(P )
k,v 2−ks ≤ C(s, p, q,M, P, θ, µ(A)) <∞.

Finally, by Corollary 5.5, the set A′ is contained in the Hausdorff limit of A′k and this

is contained in a (1/s)-Hölder curve Γ = f([0, 1]) with Hölder constant depending on at

most s, p, q, M , P , θ, and µ(A). �

Theorem 7.5 follows from countably many applications of Lemma 7.6 and a standard

density theorem for Radon measures in RN . See the proof of [BV18, Theorem 6.7], where

a similar argument is employed. We leave the details to the reader.

8. Hölder parameterization of flat continua

The goal of this section is to prove Proposition 1.3, which we now restate.

Proposition 8.1. There exists a constant β1 ∈ (0, 1) such that if s > 1 and E ⊂ RN is

compact, connected, Hs(E) <∞, E is lower Ahlfors s-regular with constant c, and

(8.1) βE
(
B(x, r)

)
≤ β1 for all x ∈ E and 0 < r ≤ diamE,

then E = f([0, 1]) for some injective (1/s)-Hölder continuous map f : [0, 1] → RN with

Hölder constant H .s c−1Hs(E)(diamE)1−s.

The proposition is trivial if E is a singleton (in which case (8.1) is vacuous). Thus, we

may assume that E ⊂ RN is a continuum; that is, E is compact, connected, and contains

at least two points. Furthermore, as the hypothesis and the conclusion are scale-invariant,

we may assume without loss of generality that diamE = 1. To complete the proof of the

proposition, we mimic the proof of Theorem 5.1, but with a few modifications. In §8.1,

we perform a simplified version of the algorithm in §3. Then, in §8.2, we establish an

upper bound on Ms([0, 1]) in terms of c−1Hs(E), which fills the role that Proposition
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4.11 played for Theorem 5.1. Equipped with this mass bound, the proof of Proposition

8.1 essentially follows by repeating the proof of Theorem 5.1 mutatis mutandis.

At the core of the proof of Proposition 8.1 is the following property, which is satisfied by

continua that are sufficiently flat at all locations and scales. We defer a proof of Lemma

8.2 to §8.4. An adventurous reader may wish to supply their own proof.

Lemma 8.2. Suppose that E ⊂ RN is a continuum satisfying

βE
(
B(x, r)

)
≤ 2−11 for all x ∈ E and 0 < r ≤ diamE.

Then for all distinct x, y ∈ E and for all z ∈ [x, y], there exists z′ ∈ E such that π`x,y(z′) =

z and |z − z′| ≤ 2−4|x− y|, where `x,y denotes the line containing x and y.

8.1. Traveling Salesman algorithm for flat continua. Fix a constant β1 > 0 (small)

to be specified later. Let E ⊂ RN be a continuum satisfying the hypothesis of Proposition

8.1. Without loss of generality, we assume that diamE = 1. Pick x0 and y0 such that

|x0 − y0| = 1, set r0 = 1, C∗ = 2, and ξ1 = ξ2 = 1/2. Then

A∗ =
C∗

1− ξ2

= 4, 14A∗ = 56, 30A∗ = 120.

Furthermore, the scales ρk = 2−k satisfy (V0).

Set V0 = {x0, y0}, α0,x0 = 4βE
(
B(x0, 1)

)
and α0,y0 = 4βE

(
B(y0, 1)

)
, and let `0,x0 and

`0,y0 be best fitting lines corresponding to βE on the closed balls B(x0, 1) and B(y0, 1),

respectively.

Suppose that for some k ≥ 0 and for all 0 ≤ j ≤ k, we have defined sets Vj, numbers

αj,v ≥ 0 for all v ∈ Vj, and lines `j,v for all v ∈ Vj satisfying (V5). Choose Vk+1 to be any

maximal 2−(k+1)-separated subset of E such that Vk+1 ⊃ Vk. For each v ∈ Vk+1, set

αk+1,v :=
2rk+1

2−(k+2)
βE
(
B(v, rk+1)

)
≤ 480βE

(
B(v, rk+1)

)
,

where rk+1 := min{120 · 2−(k+1), 1}, and let `k+1,v be a best fitting line corresponding to

βE
(
B(v, rk)

)
. The reader may check that the sequence of sets (Vk)

∞
k=0 satisfy properties

(V1)–(V5) in 2.2.

We now specify α0 = 512β1 ≤ 1/16. This ensures that αk,v < α0 for all k ≥ 0 and

v ∈ Vk. Moreover, β1 is sufficiently small that we may invoke Lemma 8.2 for E. With α0

fixed, carry out a modified version of the algorithm in §3, in which (P4), (P6), and (P7)

are replaced by:

(P4’) fk|
⋃

Ek is one-to-one.

(P6’) For each I ∈ Nk ∪ Fk, the image fk(I) ∈ Vk. For every v ∈ Vk, there exists a

unique interval I ∈ Nk ∪Fk such that v = fk(I).

(P7’) If Ik = Ek ∪Bk ∪Nk ∪Fk is enumerated according to the natural order in [0, 1],

say Ik = {I1, . . . , I2l+1}, then the intervals alternate between elements of Nk∪Fk

and Ek. (Thus, the family Bk = ∅.) Moreover, card Nk = 2 and I1, I2l+1 ∈ Nk.

The vertices fk(I1) and fk(I2l+1) are 1-sided terminal in Vk, while each other vertex

fk(I2j+1) is non-terminal in Vk for all 1 ≤ j ≤ l − 1.



50 MATTHEW BADGER, LISA NAPLES, AND VYRON VELLIS

We now sketch some steps in the modified algorithm.

8.1.1. Step 0. Partition [0, 1] = [0, 1/3] ∪ (1/3, 2/3) ∪ [2/3, 1] and assign

E0 = {(1/3, 2/3)}, B0 = ∅, N0 = {[0, 1/3], [2/3, 1]}, F0 = ∅.

Also set f0([0, 1/3]) = x0 and f0([2/3, 1]) = y0, and define f0|(1/3, 2/3) to be the restriction

of the affine map which interpolates between x0 and y0. Verifying properties (P1), (P2),

(P3), (P4’), (P5), (P6’), and (P7’) is straightforward. We omit the details.

8.1.2. Induction Step. Suppose that Ek, Bk, Nk, Fk, and fk have been defined and satisfy

properties (P1), (P2), (P3), (P4’), (P5), (P6’), and (P7’).

By (P7’) and the induction assumption, the procedure in §3.3 is moot, because there

are no bridge intervals.

Follow the procedure in §3.4 for I ∈ Ek as written, except assign all closed subintervals

Nk+1(I) ∪Fk+1(I) generated in I to Fk+1(I) instead of Nk+1(I). Also set Nk+1(I) = ∅.
Below, we check that Bk+1(I) = ∅; see Lemma 8.3.

Because αk,v < α0 for all v ∈ Vk, the procedure in §3.5 is moot.

Follow the procedure in §3.6 as written.

Replace the procedure in §3.7 as follows.

By property (P7’), only the intervals in Ik containing 0 and 1 belong to

Nk and fk maps each of them onto a 1-sided terminal vertex in Vk. Let I

be the interval in Nk containing 0 and let v = fk(I). Let (v, v′) ∈ Flat(k)

be the unique flat pair with first coordinate v. Choose an orientation for

`k,v so that [v, v′] lies on the right side of v. Enumerate the points in Vk+1∩
B(fk(I), C∗ρk+1r0) on the left side of v (including v) as vl, vl−1, . . . , v1 = v,

starting at the leftmost vertex and working right. The construction splits

into three cases.

Case 1a. If l = 1, then no new points appeared to the left of v and we

set Nk+1(I) = I and fk+1|I = fk|I. Set Ek+1(I) = Bk+1(I) = Fk+1(I) = ∅.
Case 1b. If l = 2, then one new point appeared to the left of v, the new

point is 1-sided terminal in Vk+1 and v is non-terminal in Vk+1. Subdivide

I = [0, a] = [0, 1
3
a] ∪ (1

3
a, 2

3
a) ∪ [2

3
a, a], set Nk+1(I) = [0, 1

3
a], Ek+1(I) =

(1
3
a, 2

3
a), Fk+1(I) = [2

3
a, a], and Bk+1 = ∅. Define fk+1|I by assigning

fk+1([0, 1
3
a]) = v2, fk+1|(1

3
a, 2

3
a) to be the restriction of the affine map that

interpolates between v2 and v1, and fk+1([2
3
a, a]) = v1.

Case 1c. If l ≥ 3, then subdivide I into 2l − 1 intervals, alternating

between closed and open intervals. Assign the first interval to Nk+1(I)

and the subsequent closed intervals to Fk+1(I). Assign the open intervals

in Ek+1(I) and set Bk+1(I) = ∅. The map fk+1|I is the piecewise linear

map starting at vl, connecting vl to vl−1, . . . , connecting v2 to v1, which is

constant on the intervals in Nk+1(I) ∪Fk+1(I) and constant speed on the

intervals in Ek+1(I).
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Carry out a similar construction for the interval J in Nk containing 1,

but modified so that Nk+1(J) contains only one interval and that interval

contains 1.

Because αk,v < α0 for all v ∈ Vk, the procedure in §3.8 is not used.

Lemma 8.3. For all k ≥ 0, Bk = ∅. Moreover, for all I ∈ Ek, diam fk(I) < 3 · 2−k.

Proof. We need to check that, for flat continua, the procedure in §3.4 does not generate

bridge intervals. Given I ∈ Ek, let v and v′ denote the endpoints of fk(I). Choose an

orientation of `k,v so that v′ lies to the right of v. Enumerate Vk+1(v, v′) = {v1, . . . , vn},
where v1 = v, vn = v′, and vi+1 is the first point to the right of vi for all 1 ≤ i ≤ n − 1.

Suppose for contradiction that Bk+1(I) 6= ∅. Then

|vj+1 − vj| ≥ 14A∗ρk+1 = 56 · 2−(k+1) for some 1 ≤ j ≤ n− 1.

Let x = (vj + vj+1)/2 denote the midpoint between vj and vj+1. By Lemma 8.2, there

exists y ∈ E such that |y − x| ≤ (1/16)|vj+1 − vj|. Thus,

dist(y, Vk+1) ≥ dist(x, Vk+1)− |y − x| ≥ 7

16
|vj − vj−1| > 24 · 2−(k+1).

This contradicts our assumption that Vk+1 is a maximal 2−(k+1)-separated set for E.

Therefore, Bk+1(I) = ∅ for all I ∈ Ek. The only other instances in the algorithm where

bridge intervals could be generated are in the procedures in §§3.5 and 3.8. However, since

αk,v < α0 for all k ≥ 0 and v ∈ Vk, these procedures were never used.

Similarly, suppose to get a contradiction that there exists I ∈ Ek such that diam fk(I) ≥
3 · 2−k. Let v and v′ denote the endpoints of fk(I), and let x = (v + v′)/2 denote their

midpoint. By Lemma 8.2, there exists y ∈ E such that |y − x| < (1/16)|v − v′|. Then

dist(y, Vk) ≥ dist(x, Vk)− |x− y| ≥
7

16
|v − v′| ≥ 21

16
2−k.

This contradicts our assumption that Vk+1 is a maximal 2−(k+1)-separated set for E. �

Verifying properties (P1), (P2), (P3), (P4’), (P5), (P6’), and (P7’) for Ek+1, Bk+1,

Nk+1, Fk+1, and fk+1 is again routine. We leave the details to the reader.

8.2. Mass estimate. Let Ms([0, 1]) be defined as in §4.

Lemma 8.4. Ms([0, 1]) ≤ 48sc−1Hs(E).

Proof. Fix a finite tree T over [0, 1] of depth m (see §4) and suppose that

∂T = {(k′1, J1), (k1, I1), . . . , (k′l, Jl), (kl, Il), (k
′
l+1, Jl+1)},

enumerated according to the orientation of [0, 1] so that

{I1, . . . , Il} ⊆
⋃
k≥0

Ek and {J1, . . . , Jl+1} ⊆
⋃
k≥0

(Nk ∪Fk).

The first interval J1 ∈ Nk′1
and the last interval Jl+1 ∈ Nk′l+1

, since they contain 0 and 1,

respectively. The remaining intervals Ji ∈ Fk′i
, because they do not contain 0 or 1.
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For each 1 ≤ i ≤ l, let xi denote the midpoint of fki(Ii).

Claim 8.5. One one hand, the set E ∩ B(xi, (3/16)2−ki) is nonempty for all 1 ≤ i ≤ l.

On the other hand, the family
{
E ∩B(xi, (1/4)2−ki) : 1 ≤ i ≤ l

}
is pairwise disjoint.

Proof. Given 1 ≤ i ≤ l, let vi and v′i denote the endpoints of fki(Ii). By Lemma 8.3,

|vi − v′i| < 3 · 2−ki .

Hence there exists zi ∈ E ∩B(xi, (1/16)|vi− v′i|) ⊂ E ∩B(xi, (3/16) · 2−ki) by Lemma 8.2.

Suppose in order to reach a contradiction that there exists

z ∈ E ∩B(xi, (1/4)2−ki) ∩B(xj, (1/4)2−kj)

for some i 6= j with 0 ≤ ki ≤ kj ≤ m.

Case 1. Suppose that kj ≥ ki + 3. Then

|vj − xi| ≤ |vj − xj|+ |xj − z|+ |z − xi| <
3

2
· 2−kj +

1

4
2−kj +

1

4
· 2−ki < 1

2
· 2−ki

and similarly for v′j. Because {vj, v′j} ⊂ B(xi,
1
2
2−ki), we conclude that vj and v′j lie

between vi and v′i with respect to the linear ordering of Vi ∩ B(vi, 120 · 2−ki). It follows

that Ij is contained in Ii, but Ij 6= Ii. This contradicts the assertion that Ii ∈ ∂T .

Case 2. Suppose that kj ≤ ki + 2. Then

|vi−vj| ≤ |vi−xi|+|xi−z|+|z−xj|+|xj−vj| <
3

2
2−ki +

1

4
·2−ki + 1

4
·2−kj +

3

2
2−kj < 8·2−kj ,

|v′i − vj| ≤ |v′i − vi|+ |vi − vj| < 3 · 2−ki + 8 · 2−kj ≤ 20 · 2−kj .
In particular, vi, v

′
i, vj, v

′
j belong to Vj ∩ B(vj, 120 · 2−kj), which is linearly ordered by

Lemma 2.2, where vj and vj+1 are consecutive points. Assume that vi and v′i both lie on

the left or the right side of [vj, v
′
j], say without loss of generality that the appear from left

to right as vj, v
′
j, vi, v

′
i. Then

|xi − v′j| ≥
1

2
|v′i − vi| ≥

1

2
· 2−ki > 1

4
· 2−ki .

It follows that B(vj,
1
4
· 2−kj)∩B(vi,

1
4
· 2−ki) is empty, which contradicts our assumption.

Thus, one of vi or v′i lies on the left side of [vj, v
′
j] and the other lies on the right side.

Then Ij ⊂ Ii. If kj ≥ ki+1, then we reach the same contradiction as in Case 1. If kj = ki,

then it follows that Ij = Ii, which contradicts our assumption that i 6= j. �

We now continue with the proof of Lemma 8.4. By Claim 8.5, we can find balls

B(zi, (1/16)2−ki) centered in E for all 1 ≤ i ≤ l, which are pairwise disjoint. Moreover,

because E is lower Ahlfors regular, we have c[(1/16)2−ki ]s ≤ Hs(E ∩ B(zi, (1/16)2−ki))

for all 1 ≤ i ≤ l. Therefore, by Lemma 8.3 and additivity of measures on disjoint sets,∑
(k,I)∈∂T

(diam fk(I))s =
l∑

i=1

(diam fki(Ii))
s ≤

l∑
i=1

(3 · 2−ki)s ≤ 48sc−1Hs(E).
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Because T was an arbitrary finite tree over [0, 1], we obtain the corresponding inequality

for the total mass Ms([0, 1]). �

Corollary 8.6. If k ≥ 0, I ∈ Ik, and a is an endpoint of I, then

Ms(k, I) ≤ 48sc−1Hs(E ∩B(fk(a), 6 · 2−k)).

Proof. Let T be a finite tree over (k, I). By Lemma 8.3, the image of any edge interval

in ∂T is contained in a ball centered at fk(a) of radius at most

3 · 2−k + 3 · 2−(k+1) + · · · = 6 · 2−k.

The conclusion follows by repeating the proof of Lemma 8.4. �

8.3. Proof of Proposition 8.1. With Lemma 8.4 in hand, follow the proof of Theorem

5.1 in §5.1, mutatis mutandis. Construct families of intervals E ′k, N ′
k , and F ′

k as in §5.1.

We are free to specify the following additional constraints.

• If I ∈ Ek, say I ∈ Ek(I0) for some I0 ∈ Ek−1 ∪ Nk−1, then the corresponding

interval I ′ ∈ E ′k satisfies

(8.2) diam I ′ =
Ms(k, I)

Ms([0, 1])
+

1

card(Ek(I0))

diam I0 −
∑

J∈Ik(I0)

Ms(k, J)

Ms([0, 1])

 .

• If I ∈ Fk, then the corresponding interval I ′ ∈ F ′
k satisfies diam I ′ = 0. That is,

I ′ is a singleton.

• If I ∈ Nk, then the corresponding interval I ′ ∈ N ′
k satisfies diam I ′ =

Ms(k, I)

Ms([0, 1])
.

Lemma 8.7. For any ε > 0, there exists k0 ≥ 0 such that diam I ≤ ε for all k ≥ k0 and

I ∈ I ′
k.

Proof. Fix ε > 0. Note that if J ∈ El, then card(El+1(I)) ≥ 2 by Lemma 8.2, because

diam fl(J) ≥ 2−l and Vl+1 is a maximal 2−(l+1)-separated set in E.

Suppose that I ∈ Ik. Set Jk = I. Inductively, given Jl ∈ Il, let Jl−1 denote the unique

interval in Il−1 with Jl ⊂ Jl−1. That is,

I = Jk ⊂ Jk−1 ⊂ · · · ⊂ J1 ⊂ J0 = [0, 1].

For each i ∈ {0, . . . , k}, let J ′i ∈ I ′
i be the interval associated to Ji. We claim that for

each i ∈ {0, . . . , k}

(8.3) diam J ′i ≤
i∑
l=0

2l−i
Ms(l, Jl)

Ms([0, 1])
.

We prove (8.3) by induction. For i = 0 the claim is clear. Assume that (8.3) is true for

0 ≤ i < k. If Ji+i ∈ Fi+1(Ji), then diam J ′i+1 = 0 and (8.3) is clear. If Ji+i ∈ Fi+1(Ji),
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then diam J ′i+1 = Ms(i + 1, Ji+1)/Ms([0, 1]) and (8.3) is again clear. If Ji+i ∈ Ei+1(Ji),

then by (8.2) and the induction hypothesis,

diam J ′i+1 ≤
Ms(i+ 1, Ji+1)

Ms([0, 1])
+

1

2
diam J ′i ≤

i+1∑
l=0

2l−(i+1) Ms(l, Jl)

Ms([0, 1])
.

This establishes (8.3).

Choose an integer l0 sufficiently large so that 2−l0l0 ≤ ε/2. If k ≥ l0, then by (8.3) and

the fact that Ms([0, 1]) ≥ (diamE)s = 1,

diam I ′ ≤
l0−1∑
l=0

2l−k
Ms(l, Jl)

Ms([0, 1])
+

k∑
l=l0

2l−k
Ms(l, Jl)

Ms([0, 1])
≤ ε

2
+ 2Ms(l0, Jl0).

Thus, by Corollary 8.6,

diam I ′ ≤ ε

2
+ 2

48s

c
sup
x∈E
Hs(E ∩B(x, 6 · 2−l0))

whenever k ≥ l0. Now, because E is compact, Hs(E) <∞, and Hs has no atoms,

lim
n→∞

sup
x∈E
Hs(E ∩B(x, 6 · 2−n)) = 0.

Hence, by choosing l0 even larger if necessary, we can ensure that

sup
x∈E

2
48s

c
Hs(E ∩B(x, 6 · 2−l0)) <

ε

2
.

Therefore, diam I ′ < ε for all k ≥ l0 provided that l0 is sufficiently large depending on ε

and E. �

Following the proof of Theorem 5.1 in §5.1, we obtain a sequence of maps Fk : [0, 1]→
RN and a (1/s)-Hölder continuous map F : [0, 1]→ RN satisfying the following properties.

(1) For each k ≥ 0, there exist (possibly degenerate) closed intervals [0, ak] and [bk, 1]

such that Fk|[0, ak] and F |[0, bk] are constant maps and F (0), F (1) ∈ Vk.
(2) For each k ≥ 0, the map Fk|(ak, bk) is an injective piecewise linear map connecting

Fk(0) to Fk(1) along line segments between points in Vk of length at most 3 · 2−k.
(3) If x ∈ Vk \ {Fk(0), Fk(1)} for some k ≥ 0, then F−1

k (x) = F−1
j (x) for all k ≥ j

(because intervals in Fj are frozen).

(4) The maps Fk converge uniformly to F and F ([0, 1]) contains
⋃∞
k=0 Vk.

(5) The Hölder constant of F satisfies

H ≤ 1

ξ1

(
Ms([0, 1])r1−s

0 + 60A∗r0
ξ2

1− ξ2

)
.s c

−1Hs(E)(diamE)1−s.

It remains to show that F ([0, 1]) = E and F is injective.

On one hand, since each Vk is a maximal 2−k-separated set in E,

F ([0, 1]) ⊃
⋃∞
k=0 Vk = E
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by (3). On the other hand, if x ∈ F ([0, 1]), say x = F (t), then

dist(x,E) ≤ lim inf
k→∞

dist(Fk(t), E) = 0

by (2). Thus, F ([0, 1]) = E.

To check injectivity, we first establish a lemma. We say that an interval I separates

two numbers x < y if x < z < y for all z ∈ I.

Lemma 8.8. Let 0 ≤ x < y ≤ 1. If k0 is the least integer k ≥ 0 such that there exists an

interval in E ′k separating x and y, then |Fk(x)− Fk(y)| & 2−k0 for all k ≥ k0.

Proof. Fix 0 ≤ x < y ≤ 1, let k0 be as in the statement of the lemma and let k ≥ k0. Let

I0 ∈ Ek0 be such that I0 separates x and y. The proof is divided into two cases.

Case 1. Assume that k ≤ k0 + 3. By Remark 3.5 and minimality of k0, there exist

at most 13 intervals I ∈ E ′k0
separating x from y. Therefore, there exist consecutive

intervals J1, . . . , Jl ∈ Ik such that x, y ∈
⋃l
i=1 Ji, I0 ⊂

⋃l
i=1 Ji and l ≤ 15. Let a be an

endpoint of I0. Since diamFk(Ji) ≤ 3 · 2−k0 for all i ∈ {1, . . . , l}, the points Fk(x) and

Fk(y) are in B := B(Fk(a), 45 · 2−k0). Let ` be a best fitting line for B and let π be the

orthogonal projection on `. Since βE(B) ≤ 2−11, the points of Fk(
⋃l
i=1 Ji)∩B are linearly

ordered according to their projection on `. In particular, |z − w| ≤ 2|π(z)− π(w)| for all

z, w ∈ Fk(
⋃l
i=1 Ji) ∩B. Thus,

|Fk(x)− Fk(y)| ≥ |π`(Fk(x))− π`(Fk(y))| ≥ diamπ`(Fk(I0)) ≥ 1

2
diamFk(I0) ≥ 1

2
2−k0 .

Case 2. Assume that k ≥ k0 + 4. For each integer i ≥ 0, let Pi(x, y) be the end-

points of intervals in E ′k0+4+i lying between x and y. Let xi (resp. yi) be the leftmost

(resp. rightmost) element of Pi(x, y). For all i ≥ 0,

x ≤ xi+1 ≤ xi < yi ≤ yi+1 ≤ y,

and I0 separates x0 from y0. As in Case 1, if ` is a best fitting line for Fk0(a), then

|Fk0+3(x0)− Fk0+3(y0)| ≥ |π`(Fk0+3(x0))− π`(Fk0+3(y0))| ≥ diamπ`(Fk0(I0)) ≥ 9

10
2−k0 .

Now, each xi+1 (resp. yi+1) is contained in the closure of an interval in E ′k+4+i which has

xi (resp. yi) as an endpoint. This fact along with Lemma 8.3 yields

|Fk0+4+i(xi)− Fk0+5+i(xi+1)| ≤ 3 · 2−k0−4−i,

|Fk0+4+i(yi)− Fk0+5+i(yi+1)| ≤ 3 · 2−k0−4−i.
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Therefore, by the triangle inequality,

|Fk(x)− Fk(y)| ≥ |Fk0+4(x0)− Fk0+4(y0)| −
∞∑
i=0

|Fk0+4+i(xi)− Fk0+5+i(xi+1)|

−
∞∑
i=0

|Fk0+4+i(yi)− Fk0+5+i(yi+1)|

≥ 9

10
2−k0 − 6 · 2−k0−4 − 6 · 2−k0−4.

Hence |Fk(x)− Fk(y)| ≥ (3/20)2−k0 and the proof is complete. �

Suppose that x, y ∈ [0, 1] with x < y. By Lemma 8.7, there exist intervals I ∈ E ′k that

separate x and y provided that k is sufficiently large. If k0 is the least such integer, then

|F (x) − F (y)| & 2−k0 > 0 by Lemma 8.8. This shows that F is injective and completes

the proof of Proposition 8.1.

8.4. Proof of Lemma 8.2. We first give an auxiliary estimate.

Lemma 8.9. Let E ⊂ RN , x ∈ E, and r > 0. If y ∈ E∩B(x, r), |y−x| ≥ 64βE(B(x, r))r,

and `x,y is the line passing through x and y, then

dist(z, `x,y) ≤ 4βE(B(x, r))

(
1 +

1.1r

|y − x|

)
r for all z ∈ E ∩B(x, r).

Proof. Let z ∈ E ∩ B(x, r), z 6= x. Let ` be a best fitting line for E in B(x, r). Then

dist(x, `), dist(y, `), and dist(z, `) are bounded above by βE(B(x, r))2r. Let `x = ` − x.

Then x ∈ `x and dist(y, `x) and dist(z, `x) are bounded above by 2βE(B(x, r))2r. If y ∈ `x,
then we have dist(z, `x,y) = dist(z, `x) ≤ 2βE(B(x, r))2r and we are done.

To continue, suppose that y 6∈ `x and let y′ = π`x(y) and let z′ = π`x(z). Define

w = x+
|z′ − x|
|y′ − x|

(y − x) ∈ `x,y.

Since z′ ∈ `x between x and y′, we have that z′ = x+ |z′−x||y′−x|−1(y′−x). Therefore,

dist(z′, `x,y) ≤ |z′ − w| = |y′ − y|
|z′ − x|
|y′ − x|

≤ |y′ − y| r

|y′ − x|
.

Thus, by the triangle inequality,

dist(z, `x,y) ≤ |z′ − z|+ |y′ − y|
r

|y′ − x|
≤ 2βE(B(x, r))

(
1 +

r

|y′ − x|

)
2r.

Since dist(y, `x) ≤ 2βE(B(x, r))2r ≤ (1/16)|x− y|, we have

1.1|y′ − x| ≥ (1 + 3(1/16)2)|y′ − x| ≥ |y − x|

by Lemma 2.1, applied with V = {x, y}. Therefore,

dist(z, `x,y) ≤ 2βE(B(x, r))

(
1 +

1.1r

|y − x|

)
2r. �
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We now give a proof of the key lemma.

Proof of Lemma 8.2. Without loss of generality, we may assume that diamE = 1. Fix

x, y ∈ E and let n ≥ 0 be the unique integer such that

2−(n+1) < |x− y| ≤ 2−n.

Case 1. Suppose that n ∈ {0, 1}. Let ` be the line containing x and y. Since

βE(B(x, 1)) ≤ 2−11 and since |x− y| > 2−2, by Lemma 8.9 we have that

sup
w∈E

dist(w, `) = sup
w∈E∩B(x,1)

dist(w, `) ≤
(

1 +
1.1

|x− y|

)
4βE(B(x, 1))

≤ 21.6

211
≤ 1

26
<
|x− y|

24
.

Therefore, E is contained inside the tube T := B(x, 1) ∩ B(`, 2−4|x − y|). Let D be a

closed (N − 1)-ball centered at z, perpendicular to ` and of radius 2−4|x − y|. In other

words, D is the set of all points in B(z, 2−6) whose projection on ` is z. Then D cuts T

into two pieces, one containing x and another containing y. By connectedness of E, we

must have D ∩ E 6= ∅.
Case 2. Suppose that n ≥ 2. The procedure here is roughly the same as that in

Case 1, with the difference that the tube T is replaced by a more complicated set. By

connectedness of E, for each k ∈ {1, . . . , n− 1}, there exists a point yk ∈ B(x, 2−k) ∩ E.

For each k ∈ {1, . . . , n− 1} let `k be the line containing x and yk. Let also `n be the line

containing x and y.

Working as in Case 1, we can show that for each k ∈ {1, . . . , n},

E ∩B(x, 2−(k−1)) ⊂ Tk := B(x, 2−(k−1)) ∩B(`k, 2
−52−(k−1)).

Since diamE = 1, we also have E ⊂ T1. For each k ∈ {1, . . . , n− 1}, let Tk,1, Tk,2 be the

two components of Tk \B(x, 2−k). Set

T = T1,1 ∪ · · · ∪ Tn−1,1 ∪ Tn ∪ Tn−1,2 ∪ · · · ∪ T1,2.

The sets T1,1, . . . , Tn−1,1, Tn, Tn−1,2, . . . , T1,2 intersect at most in pairs. In particular,

(1) if i ∈ {1, 2}, then T1,i ∩ Tm,j = ∅ unless m ∈ {1, 2} and j = i;

(2) if k ∈ {2, . . . , n − 2} (if any) and i ∈ {1, 2}, then Tk,i ∩ Tm,j = ∅ unless m ∈
{k − 1, k, k + 1} and j = i;

(3) if i ∈ {1, 2}, then Tn−1,i ∩ Tm,j = ∅ unless m ∈ {n− 2, n− 1} and j = i;

(4) Tn ∩ Tm,j = ∅ unless m = n− 1.

As with Case 1, if D is an (N − 1)-ball centered at z, perpendicular to `n and of radius

2−42−n, then D cuts Tn into two pieces, one containing x and another containing y.

Consequently, D cuts T into two pieces, one containing x and another containing y. By

connectedness of E and the fact that E ⊂ T , we must have D ∩ E 6= ∅. �
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9. Examples

In this section, we give examples of Hölder curves and of sets that are not contained in

Hölder curves to illuminate Theorem 1.1, Proposition 1.3, and Theorem 5.1.

9.1. Hölder curves that are non-flat in all scales. First up, we show that condition

(1.2) in Theorem 1.1 is not necessary for a bounded set to be contained in a (1/s)-Hölder

curve when s > 1. In contrast, when s = 1, condition (1.1) in the Analyst’s Traveling

Salesman theorem is necessary and sufficient for a bounded set to be contained in a

rectifiable curve.

Let N ≥ 2 and 1 ≤ m ≤ N − 1 be integers. Given a nonempty set E ⊂ RN and an

N -cube Q ⊂ RN with E ∩Q 6= ∅, define the m-dimensional beta number

β
(m)
E (Q) := inf

P
sup

x∈E∩Q

dist(x, P )

diamQ

where the infimum is taken over all m-planes P in RN . If E ∩ Q = ∅, set β
(m)
E (Q) = 0.

Note that β
(1)
E (Q) = βE(Q) as defined in §1 and that β

(m)
E (Q) ≤ β

(n)
E (Q) whenever m ≥ n.

Proposition 9.1. For any N ≥ 2 and any s ∈ (1, N ], there exists a (1/s)-Hölder curve

E ⊂ RN such that

(9.1)
∑

Q∈∆(RN )

β
(N−1)
E (3Q)≥(6

√
N)−1

(diamQ)s =∞.

The construction splits into three cases. Before proceeding, we introduce some notation.

Given a cube Q ⊂ RN , denote by ∆(Q) the set of dyadic cubes in ∆(RN) that are

contained in Q. Moreover, given positive integers m ≤ N , there exists a polynomial PN,m
of degree m with the following property: If n ∈ N and {Q1, . . . , QNn} is a partition of

[0, 1]N into N -cubes of side-length 1/n, then

card{Qi : Qi intersects the m-skeleton of ∂[0, 1]N} = PN,m(n).

Recall that if I1, . . . , IN are nondegenerate compact intervals, and Q = I1 × · · · × IN is

an N -cube, then the m-skeleton of Q is the union of sets I ′1 × · · · × I ′N where I ′j = Ij for

m indices j and I ′j = ∂Ij for the remaining N −m indices j. Finally, we note that if K

is the set of vertices of a cube Q in RN and P is an (N − 1)-plane, then

(9.2) dist(x, P ) ≥ (2
√
N)−1 diamK for all x ∈ K.

Case 1: s = N . We simply take E = [0, 1]N . It is well known that there exists a

(1/N)-Hölder parametrization f : [0, 1]→ E. On the other hand, by (9.2),∑
Q∈∆(RN )

β
(N−1)
E (3Q)≥(2

√
N)−1

(diamQ)N ≥
∞∑
k=0

∑
Q∈∆([0,1]N )

diamQ=
√
N2−k

(diamQ)N =
∞∑
k=0

2Nk(
√
N2−k)N =∞.
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Case 2: s ∈ (1, N) \ N. Let m be the integer part of s. Since the degree of PN,m is

strictly less than s and strictly lager than s− 1, we can fix n ∈ N such that

(9.3) ns − (n− 2)s < PN,m(n) < ns − 1.

By (9.3) and the Intermediate Value Theorem, there exists λ ∈ ( 1
n
, 1− 2

n
) such that

(9.4) PN,m(n)n−s + λs = 1.

Partition [0, 1]N into N -cubes of side-lengths 1/n and let {Qi}li=1 (l = PN,m(n)) be those

cubes that intersect the m-skeleton of [0, 1]N . Let also Q0 = [1/n, 1/n + λ]N . For each

i = 0, . . . , l, let φi be a similarity of RN such that φi([0, 1]N) = Qi. Finally, define E ⊂ RN ,

E :=
∞⋂
k=1

⋃
i1···ik∈{0,...,l}k

φi1 ◦ · · · ◦ φik([0, 1]N).

Since the maps {φ0, . . . , φl} satisfy the open set condition, E is Ahlfors regular [Hut81].

By (9.4) the Hausdorff dimension of E is equal to s, so E is s-regular.

Lemma 9.2. The set E is connected.

Proof. Set W =
⋃
k≥0{0, . . . , l}k with the convention that {0, . . . , l}0 is the empty word

∅ and φ∅ is the identity map of RN For each w ∈ W , let Kw denote the 1-skeleton of

φw([0, 1]N). The proof is based now on two observations. First, by the choice of cubes

Q1, . . . , Ql, it follows that Kw ⊂ E for all w ∈ W . Second, Kw ∩ Kwi 6= ∅ for all w ∈ W
and i ∈ {0, . . . , l}.

Now fix x ∈ E. There exists a sequence of words (wn)n≥0 in W such that w0 is the

empty word, wn+1 = wnin with in ∈ {0, . . . , l}, and x ∈
⋂
n≥0 φwn(x). The set

⋃
n≥0Kwn

is a path that joins x with the origin. Hence E is connected. �

By Lemma 9.2, the fact that the Hausdorff dimension of E is s, and Theorem 4.12 in

[Rem98], there exists a (1/s)-Hölder map f : [0, 1] → RN such that f([0, 1]) = E. It

remains to show (9.1). We first prove a lemma.

Lemma 9.3. If Q ∈ ∆([0, 1]N) is a dyadic cube that intersects E, then there exists a

dyadic cube Q′ ⊂ 3Q such that diamQ′ ≥ (3n)−1 diamQ and β
(N−1)
E (3Q′) ≥ (6

√
N)−1.

Proof. Fix x ∈ Q ∩ E and let i1, i2, . . . be a sequence of numbers in {0, . . . , l} such that

x ∈
∞⋂
k=1

φi1 ◦ · · · ◦ φik([0, 1]N).

Let k0 be the smallest positive integer such that φi1 ◦ · · · ◦ φik0
([0, 1]N) ⊂ 3Q and define

K to be the set of vertices of φi1 ◦ · · · ◦ φik0
([0, 1]N). Since each φi has a scaling factor at

least 1/n, by minimality of k0 we have that diamK ≥ (1/n) diamQ.

Let Q′ be a dyadic cube in ∆(3Q) (possibly Q′ = Q) of minimal diameter such that

K ⊂ 3Q′. We claim that

(9.5)
1

3
diamK ≤ diamQ′ ≤ diamK.



60 MATTHEW BADGER, LISA NAPLES, AND VYRON VELLIS

The lower inequality is clear. If diamK < diamQ, then, since K has edges parallel to the

axes, K is contained in 3Q0 for some dyadic cube Q0 ⊂ 3Q with diamQ0 = 1
2

diamQ′,

which is a contradiction. That establishes the upper inequality of (9.5).

By (9.2), (9.5), and the fact that K ⊂ E,

β
(N−1)
E (3Q′) ≥ β

(N−1)
K (3Q′) ≥ (2

√
N)−1 diamK

diam 3Q
=

(6
√
N)−1 diamK

diamQ
≥ (6
√
N)−1.

This proves the lemma. �

By Ahlfors s-regularity of E, there exists a constant C > 1 such that

card{Q ∈ ∆([0, 1]N) : diamQ =
√
N2−k and Q ∩ E 6= ∅} ≥ C−12sk.

Fix a positive integer k0 such that 2k0 > 3n. For k ∈ N, set

Qk = {Q ∈ ∆([0, 1]N) : diamQ ∈ [
√
N2−k,

√
N2−k−k0 ] and β

(N−1)
E (3Q) ≥ (6

√
N)−1}.

By Lemma 9.3,

cardQk ≥ 3−N card{Q ∈ ∆([0, 1]N) : diamQ =
√
N2−k and Q ∩ E 6= ∅} ≥ C−13−N2sk.

Therefore, ∑
Q∈∆(RN )

β
(N−1)
E (3Q)≥(6

√
N)−1

(diamQ)N ≥
∞∑
k=0

∑
Q∈Qkk0

(diamQ)N

≥
∞∑
k=0

C−13−N2skk0(
√
N)s2−s(k+1)k0 =∞.

Case 3: s ∈ {2, . . . , N − 1}. Fix n ∈ N large enough so that PN,s−1(n) < ns. Partition

[0, 1]N into N -cubes with disjoint interiors and side-lengths 1/n and let {Q1, . . . , Ql}
(l = ns) be a collection of such cubes so that the set

⋃l
k=1Qi is connected and contains

the (s− 1)-skeleton of [0, 1]N . The rest of the construction is similar to Case 2 and is left

to the reader.

9.2. Ahlfors regular curves without Hölder parametrizations. Next, for all s > 1,

we construct Ahlfors s-regular curves that are not contained in any (1/s)-Hölder curve.

The basic strategy is take a disconnected set, which is not contained in a Hölder curve,

and then extend the set to transform it into an s-regular curve. We call the curves that

we construct “Cantor ladders”.

Proposition 9.4. Let N ∈ N with N ≥ 2, let s ∈ (1, N), and let m ∈ N with m ≤ s.

There exists an Ahlfors s-regular curve E ⊂ RN , which is not contained in a (m/s)-Hölder

image of [0, 1]m.

We treat the cases s ∈ N and s 6∈ N separately. Given m ∈ N, let Wm be the set of

finite words formed by the letters {1, . . . ,m} including the empty word ∅. We denote by

|w| the number of letters a word has with the convention |∅| = 0.
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Case 1. Suppose that s ∈ {2, 3, . . . , N − 1}. Let D∅ = [0, 1]2. Given a square Dw ⊂
R2 for some w ∈ W4, let Dw1, Dw2, Dw3, Dw4 be the four corner squares in Dw with

diamDwi = (1/4) diamDw. Let C1 be the Cantor set in R2 defined by

C1 =
∞⋂
k=0

⋃
w∈W4
|w|=k

Dw.

For each i = 1, . . . , 2|w|, define Dw,i = Dw × {(2i− 1)2−|w|−1},

K2 = (C1 × [0, 1]) ∪
⋃
w∈W

2|w|−1⋃
i=0

Dw,i and E = K2 × [0, 1]s−2 × {0}N−s−1.

Here and for the rest of §9.2, we use the convention A× {0}0 = A.

Case 2. Suppose that s ∈ (1, N) \ N. Let p = s − bsc be the fractional part of s. Let

I∅ = [0, 1]. Given an interval Iw = [aw, bw] for some w ∈ W2, let

Iw1 = [aw, aw + 2−p(bw − aw)] and Iw2 = [bw − 2−p(bw − aw), bw].

Let Cp denote the Cantor set in R defined by

Cp =
∞⋂
k=0

⋃
w∈W2
|w|=k

Iw.

Let S be the bi-Lipschitz embedded image of ([0, 1], | · |
1

p+1 ) into R2. For each w ∈ W2,

let Sw be a rescaled copy of S whose endpoints are the right endpoint of Iw1 and the left

endpoint of Iw2. For each w ∈ W2 and i = 1, . . . , 2|w| − 1, define

Sw,i = Sw + (0, (2i− 1)2−|w|−1)

and define

Kp+1 = (Cp × [0, 1]) ∪
⋃
w∈W

2|w|⋃
i=0

Sw,i and E = Kp+1 × [0, 1]s−p−1 × {0}N+p−s−1.

Verification of the desired properties of E is the same for the two cases, so we only treat

Case 1. By Theorem 2.1 in [MM00], there exists no (m/s)-Hölder map f : [0, 1]m → RN

whose image contains C1 × [0, 1]s−1 × {0}N−s−1. We show that E is a curve in §9.2.1 and

we prove s-regularity of E in §9.2.2.

9.2.1. E is a curve. By the Hahn-Mazurkiewicz theorem [HY88, Theorem 3.30], to show

that E is a curve it is enough to show that E is compact, connected, and locally connected.

For compactness, it is easy to see that K2 ⊂ [0, 1]3, hence E ⊂ [0, 1]N . Moreover, as

|w| → ∞, the squares Dw,i accumulate on C×[0, 1]. Therefore, K2 is closed. Consequently,

E is compact.

To settle both connectedness and local connectedness, we prove that there exists C > 1

such that for all pairs of points x, y ∈ E there exists a path joining x with y of diameter at

most C|x− y|1/2. Clearly, it suffices to show the claim for K2 instead of E. Fix x, y ∈ K2
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and let w0 be the word in W4 of maximum word-length such that the projections of x

and y on R2 × {0} are contained in Dw0 . This means that |x − y| ≥ 1
2
4−|w0|. Choose

i0 ∈ N such that dist(x,Dw0,i0) ≤ 2 · 2−|w0|. If x0 and y0 are the projections of x and y

onto Dw0,i0 , respectively, then

max{|x0 − x|, |y0 − y|} . 2−|w0| + 4−|w0| + |x− y| ' 2−|w0|.

There exist sequences (wn)n∈N, (un)n∈N of words in W4 and sequences (in)n∈N, (jn)n∈N of

positive integers such that

(1) |wn| = |un| = |w0|+ n;

(2) the orthogonal projection of x (resp. y) on R2 is contained in Dwn (resp. Dun);

(3) there exists xn ∈ Dwn,in such that

max{|x− xn|, |y − yn|} ≤ 4−|w0|−n
√

2 + 2−|w0|−n.

Properties (1) and (2) imply that Dw0 ) Dw1 ) Dw2 ) · · · and Dw0 ) Du1 ) Du2 ) · · · ,
while property (3) implies that the Hausdorff distances

distH(Dwn,in , Dwn+1,in+1) . 2−|w0|−n and distH(Dun,jn , Dun+1,jn+1) . 2−|w0|−n.

Let γ0 ⊂ K2 be the line segment joining x0 with y0. For each n ≥ 0, let zn ∈ Dwn,in be a

corner point and let z′n be its projection on Dwn+1,in+1 . Also, let pn ∈ Dun,jn be a corner

point and let p′n be its projection on Dun+1,jn+1 . Consider the curve

γ = γ0 ∪
⋃
n∈N

([xn, zn] ∪ [zn, z
′
n] ∪ [z′n, xn+1]) ∪

⋃
n∈N

([yn, pn] ∪ [pn, p
′
n] ∪ [p′n, yn+1]),

which is a subset of K2 and joins x with y. Then

diam γ . diam γ0 +
∑
n≥0

diam γn +
∑
n≥0

diamσn

≤ |x0 − y0|+
∑
n≥0

(|xn − zn|+ |zn − z′n|+ |z′n − xn+1|)

+
∑
n≥0

(|yn − pn|+ |pn − p′n|+ |p′n − yn+1|)

. 4−|w0| +
∑
n≥0

(2−|w0|−n + 4−|w0|−n + 2−|w0|−n) . 2−|w0| ' |x− y|1/2.

9.2.2. E is s-regular. We show s-regularity for E. Because the product of regular compact

spaces of dimension s1 and s2 is (s1 + s2)-regular, to show that E is s-regular, it suffices

to show that K2 is 2-regular. Fix x ∈ K2 and r ∈ (0, diamK2).

We first show that

(9.6) H2(B(x, r) ∩K2) & r2.

If x ∈ C1 × [0, 1], then (9.6) follows from the 2-regularity of C1 × [−1, 1]. If x ∈ Dw,i

and r ≤ 10 diamDw, then (9.6) follows from the 2-regularity of Dw,i. If x ∈ Dw,i and

r ≥ 10 diamDw, then there exists z ∈ (C1× [0, 1])∩B(x, r) such that B(z, r/2) ⊂ B(x, r)

and (9.6) follows from the 2-regularity of B(z, r/2) ∩K2.
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For the upper regularity of K2, instead of working with balls B(x, r), it is more conve-

nient to use cubes

Q(x, r) = x+ [−r/2, r/2]3 x ∈ K2, r > 0.

Without loss of generality, we may assume that r = 4−k0 for some k0 ∈ N. For each k ≥ 0,

let

Dk(x, r) = {Dw,i : Q(x, r) ∩Dw,i 6= ∅ and |w| = k}.

Then by the 2-regularity of C1 × [−1, 1], it suffices to show that∑
k≥0

∑
Dw,i∈Dk(x,r)

H2(Q(x, r) ∩Dw,i) . r2.

The following lemma will let us estimate the above sum. In the sequel, we denote by

m0 ≥ 0 the smallest integer for which there exists Dw,i ∈ D(x, r) with |w| = m0.

Lemma 9.5. Let m0 ≥ 0 be the smallest integer for which Dm0(x, r) 6= ∅.
(1) If k > m0 and Dk(x, r) 6= ∅, then k ≥ 2k0.

(2) If Q′ is the projection of Q(x, r) on R2 × {0}, then for all k ≥ 0,

card {Dw : Dw ∩Q′ 6= ∅ and |w| = k} ≤ 1 + 4k4−k0 .

(3) For each w ∈ W4,

card {i : Dw,i ∩Q(x, r) 6= ∅} ≤ 1 + 2|w|+14−k0 .

(4) For each k ≥ 0, cardDk(x, r) ≤ (1 + 4k4−k0)(1 + 2k+14−k0).

(5) We have ∑
Dw,i∈Dm0 (x,r)

H2(Dw,i ∩Q(x, r)) . r2.

Proof. For (1), recall that if |w| > m0, then the vertical distance between Dw,i and Dw0,i0

is at least 2−|w|. Since r = 4−k0 , the cube Q(x, r) can not intersect any Dw,i, unless

4−k0 ≥ 2−|w|. Thus, |w| ≥ 2k0.

For (2), we first note that if k ≤ k0, then Q′ can intersect at most one square Dw with

|w| = k. We now use induction to show that for all k ≥ k0,

card {Dw : Dw ∩Q′ 6= ∅ and |w| = k} ≤ 4k4−k0 .

For k = k0, it is true. Suppose that the claim is also true for some k ≥ k0. Then Q′

intersects Dw with |w| = k + 1 if and only if there exists w′ with |w′| = k such that

Q ∩ Dw′ 6= ∅ and Dw ⊂ Dw′ . Since each square of generation k contains 4 squares of

generation k + 1,

card {Dw : Dw ∩Q′ 6= ∅ and |w| = k + 1} ≤ 4 card {Dw : Dw ∩Q′ 6= ∅ and |w| = k}
≤ 4k+14−k0 .
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For (3), fix w ∈ W4. Recall that the vertical height of Q(x, r) is 2r = 2 · 4−k0 and that

the vertical distance between Dw,i and Dw,j with i 6= j is at least 2−|w|. Therefore,

card {i : Dw,i ∩Q(x, r) 6= ∅} ≥ 1 + (2r)/2−|w| = 1 + 2|w|+14−k0 .

Claim (4) is immediate from (2) and (3).

It remains to show (5). On one hand, if m0 > k0, then by (4), card(Dm0(x, r)) = 1.

Hence (5) follows from the 2-regularity of squares Dw,i. On the other hand, if m0 ≤ k0,

then by (4),∑
Dw,i∈Dm0 (x,r)

H2(Dw,i ∩Q(x, r)) ≤ card(Dm0(x, r))(4−m0)2 . 2−m04−2k0 ≤ r2. �

By Lemma 9.5, we have∑
Dw,i∈D(x,r)

H2(B(x, r) ∩Dw,i) ≤
∑

Dw,i∈Dm0 (x,r)

H2(Dw,i) +
∞∑

k=2k0

∑
Dw,i∈Dk(x,r)

H2(Dw,i)

. r2 +
∞∑

k=2k0

2k4−k04k4−k04−2k.

Finally,
∞∑

k≥2k0

2k4−k04k4−k04−2k = 4−2k0

∑
k≥k0

2−k . 4−3k0 . r2.

Therefore, K2 is 2-regular.

9.3. A compact countable set that is not contained in any Hölder cube.

Proposition 9.6. For each N ∈ N, N ≥ 2, there exists a compact and countable set

E ⊂ RN with one accumulation point such that for any m ∈ {1, . . . , N − 1} and any

s ∈ [1, N/m), the set E is not contained in a (1/s)-Hölder image of [0, 1]m.

Corollary 9.7. For each N ∈ N, N ≥ 2, there exists a compact and countable set E ⊂ RN

with one accumulation point such that E is not contained in a rectifiable curve.

For each integer k ≥ 0, define G0
k to be the union of all vertices of all dyadic cubes

in RN that are contained in [0, 1]N and have side length 2−k. By a simple combinatorial

argument, card(Gk0 ) = (2k + 1)N for all k ≥ 0.

Let φ0 be the identity map, and for each k ≥ 1, define a map φk : RN → RN by

φk(x) = (k + 1)−2x+

(
0, . . . , 0, 2

k∑
i=1

i−2

)
.

Set A :=
∑∞

i=1 i
−2 = π2/6, and define the set

E := {(0, . . . , 0, 2A)} ∪
∞⋃
k=0

φk(G0
k).
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The set E is clearly countable. If (x1, . . . , xN) ∈ E, then |xi| ≤ 1 for all i = 1, . . . , N−1

while |xN | ≤ 2A. Therefore, E is bounded. Moreover, the only accumulation point of E

is the point (0, . . . , 0, 2A) which is contained in E. Thus, E is closed.

Next, we claim that

(9.7) |x− y| ≥ 2−k(k + 1)−2 for all x ∈ φk(G0
k) and all y ∈ E \ {x}.

Indeed, if x, y ∈ G0
k , then inequality (9.7) is clear. Otherwise, dist(G0

k , E \G0
k) ≥ (k+1)−2,

and thus, (9.7) holds again.

Suppose in order to get a contradiction that there exists a (1/s)-Hölder continuous map

f : [0, 1]m → RN such that E ⊂ f([0, 1]). Let H be the Hölder constant of f . For each

k ≥ 0 and x ∈ G0
k , fix a point wk,x such that f(wk,x) = x and set

Bk,x = B(wk,x,
1
2
H−s2−ks(k + 1)−2s).

Inequality (9.7) implies that the balls Bk,x are mutually disjoint. Moreover, it is easy to

see that each Bk,x is contained in [−1, 2]m. Therefore,

1 &m Hm([−1, 2]m) ≥
∞∑
k=0

∑
x∈G0

k

Hm(Bk,x) &H,s

∞∑
k=0

(2k + 1)N
2−skm

(k + 1)2sm
'N

∞∑
k=0

2k(N−ms)

(k + 1)2s
.

Since N > ms, the sum on the right hand side diverges and we reach a contradiction.

9.4. Flat curves with finite Hs measure and no (1/s)-Hölder parametrizations.

The following example shows that the assumption of lower s-regularity can not be dropped

from Proposition 1.3.

Proposition 9.8. For any β0 ∈ (0, 1), there exists s0 ∈ (1, 2) with the following property.

For any s ∈ (1, s0) there exists a curve E ⊂ R2 such that

(1) Hs(E) <∞ and

(2) βE(Q) < β0 for all Q ∈ ∆(RN),

but E is not contained in any (1/s)-Hölder image of [0, 1].

Before proceeding, we recall a well-known construction method for snowflakes in R2. Let

p = (p0, p1, . . . ) be sequence of numbers in [1/4, 1/2). Let Γ0 be the segment [0, 1]× {0},
oriented from (0, 0) to (1, 0). Assume that we have constructed an oriented polygonal

arc Γk with 4k edges. Define Γk+1 to be the polygonal arc constructed by replacing each

edge e of Γk by a rescaled and rotated copy of the oriented polygonal arc in Figure 4 with

p = pk, so that the new oriented arc lies to the left of e. A snowflake arc Sp is obtained

by taking the limit of Γk, just as in the construction of the usual von Koch snowflake.

Remark 9.9. For any ε > 0, there exists p∗ > 1/4 (small) such that if a snowflake is

built with parameters 1/4 ≤ pk ≤ p∗ for all k ≥ 0, then βΓk
(B(x, r)) ≤ εr for all k ≥ 0,

x ∈ Γk, and r > 0.
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Figure 4.

Fix β0 ∈ (0, 1). By the preceding remark, there exists p∗ ∈ (1/4, 1/2) such that

βSp0
(Q) < β0 for all Q ∈ ∆(RN). Set p = (p∗, p∗, . . . ), set s0 = − log 4/ log p0, and

fix s ∈ [1, s0). It is well-known that there exists a (1/s0)-bi-Hölder homeomorphism

Φ : [0, 1]→ Sp; e.g., see [BH04, RV17].

We now construct a self-similar Cantor set in [0, 1] in the following way. Let I∅ = [0, 1].

Assuming we have constructed Iw = [aw, bw] for some w ∈ {1, 2}n, let

Iw1 = [aw, aw + (bw − aw)2−s0/s] and Iw2 = [bw − (bw − aw)2−s0/s, bw].

Define E ′ =
⋂∞
n=0

⋃
w∈{1,2}n Iw. For each component J of [0, 1] \ E ′, let γJ be the line

segment joining the endpoints of Φ(J). Then define

E = Φ(E ′) ∪
⋃
J

γJ ,

where the union is taken over all components J of [0, 1] \E ′. Since E ′ is s/s0-regular and

Φ is (1/s0)-bi-Hölder,

Hs(E) = Hs(Φ(E ′)) +
∑
J

Hs(γJ) ≤ CHs/s0(E ′) <∞.

Since Φ(E ′) ⊂ Sp and γJ are line segments, we have βE(Q) < β0 for all Q ∈ ∆(RN).

Finally, by Theorem 2.1 in [MM00], there does not exist a (1/s)-Hölder map f : [0, 1]→ R2

whose image contains Φ(E ′) (and consequently E).

9.5. Sharpness of exponent 1 in Theorem 5.1. To wrap up, we show that Theorem

5.1 does not hold if numbers τs(k, v, v
′) are replaced by τs(k, v, v

′)p with p > 1. When

s = 1, this follows from the necessary half of the Analyst’s Traveling Salesman theorem.

Thus, we may focus on the case s > 1.

Proposition 9.10. Let p > 1, let s > 1 be sufficiently close to 1, and let α0 > 0 be

sufficiently close to 0. There exists a sequence of finite sets {(Vk, ρk)}≥0 of numbers and

finite sets in R2 satisfying (V0)–(V5) such that

(9.8)
∑
v∈Vk

αk,v≥α0

ρskr
s
0 +

∑
(v,v′)∈Flat(k)

τs(k, v, v
′)pρskr

s
0 <∞

but there does not exist a (1/s)-Hölder map f : [0, 1]→ R2 such that
⋃
k≥0 Vk ⊂ f([0, 1]).
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Let s > 1 and n0 ∈ N be constants to be specified below. Fix a number

0 < q < min{1/s, (p− 1)/s}.

For each n ∈ N, let

tk =

√
1

41/s

(
1 +

1

k + n0

)2q

− 1

4
.

Construct a sequence of polygonal arcs Γk as in §9.4 with parameters

pk = 1/4 + t2k.

We may assume that numbers pk are in [1/4, 1/2) by taking n0 to be sufficiently large.

For each k ≥ 0, we define a finite set Vk ⊂ Γk as follows. Define V0 := {v0,1, v0,2}, where

v0,1 = (0, 0) and v0,2 = (1, 0). Suppose that for some k ≥ 0 we have defined a set

Vk = {vk,1, . . . , vk,Nk
}, Nk = 2k + 1,

where points vk,i are enumerated according to the orientation of Γk. For each i =

1, . . . , 2k + 1, set vk+1,2i−1 = vk,i, and assign vk+1,2i to the point of Γk+1 that lies be-

tween vk+1,2i−1 and vk+1,2i+1 and is equal distance to vk+1,2i−1 and vk+1,2i+1 (the peak of

the triangle in Figure 4). Define the quantities

(9.9) r0 = 1, C∗ = 2, ξ1 = 2−1/s, ξ2 =
1 + 2−1/s

2
, ρ0 = 1, ρk = 2−k/s

(k + 1 + n0)q

(2 + n0)q
.

For each k ≥ 0 and v ∈ Vk, define

αk,v := inf
`

sup
x∈Vk+1∩B(v,30A∗ρkr0)

dist(x, `)

ρk+1r0

,

where the infimum is taken over all lines ` in R2 and A∗ is as in §2.2. Let `k,v be a line `,

which realizes the number αk,v.

Lemma 9.11. There exist choices of s and n0 so that the following properties hold.

(1) For all k ≥ 0 and i ∈ {1, . . . Nk}, we have |vk,i − vk,i+1| = ρk.

(2) The sequence {(Vk, ρk)}k≥0 satisfies (V0)–(V5) with the parameters given in (9.9).

(3) For all k ≥ 0 and v ∈ Vk, we have αk,v ≤ α0, where α0 is as in Definition 2.4.

(4) For all k ≥ 0 and i ∈ {1, . . . , Nk},

Flat(k) = {(vk,i, vk,i+1) : i = 1, . . . , 2k} and Vk+1,i(vk,i, vk,i+1) = {vk,i, vk+1,2i, vk,i}.

Proof. For (1), we work by induction. The claim is true for k = 0 by the choice of points

v0,1 and v0,2. Assume the claim is true for some k ≥ 0. By the Pythagorean theorem,

|vk+1,2i−1− vk+1,2i| = |vk,i− vk+1,2i−1| = (4−1 + t21)1/2|vk,i− vk,i+1| = (4−1 + t21)1/2ρk = ρk+1.

In similar fashion, one can compute |vk+1,2i − vk+1,2i+1| and the proof of (1) is complete.

Claim (3) is immediate from Remark 9.9 by taking s sufficiently close to 1 and n0

sufficiently large.
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For (V0), we have

ρk+1

ρk
= 2−1/s

(
k + 2 + n0

k + 1 + n0

)q
.

Clearly, ρk+1 > ξ1ρk. On the other hand, since 2−1/s < ξ2 < 1, if n0 is sufficiently

large, then ρk+1 ≤ ξ2ρk. Properties (V1), (V2), and (V5) are immediately satisfied by our

construction. For (V4), fix a point vk+1,2i ∈ Vk+1\Vk. By (1), we have |vk+1,2i−vk+1,2i+1| =
ρk+1 and (V4) is satisfied.

For (V3), claim (3), and claim (4), we apply induction on k. For k = 0 (V3) is immediate

by the choice of parameters. For claim (3), we note that α0,v = 0 for all v ∈ V0, since V0

contains only 2 points. For the same reason, claim (4) is satisfied when k = 0.

To show (V3), we note by (3) that the closest point of Vk+1 to vk+1,2i are the points vk,i
and vk,i+1. Therefore,

min
v∈Vk+1\{vk+1,2i}

|v − vk+1,2i| = |vk+1,2i − vk,i| = ρk+1.

Similarly, by (3), the closest point of Vk+1 to vk+1,2i+1 = vk,i+1 are the points vk+1,2i and

vk+1,2(i+1) (or only one point of these two if i = 0 or i = 2k}) and the above inequality

also applies.

Finally, to show (4), we apply (3) and the arguments in the proof of (V3). Namely, if

vk,i ∈ Vk with k ∈ {2, 2k−1}, then αvk,i < α0 and vk,i lies between points vk,i−1 and vk,i+1.

Therefore,

Flat(k) = {(vk,i, vk,i+1) : i = 1, . . . , 2k}.

Furthermore, the only point of Vk+1 lying between vk,i and vk,i+1 is vk+1,2i. Thus,

Vk+1,i(vk,i, vk,i+1) = {vk,i, vk+1,2i, vk,i}. �

We now show that there does not exist a (1/s)-Hölder map f : [0, 1]→ R2 whose image

contains
⋃
k≥0 Vk. Contrary to the claim, assume that such a map f exists and let H be

its Hölder constant. For each vk,i ∈ Vk, fix wk,i ∈ [0, 1] such that f(wk,i) = vk,i. Then

|wk,i − wk,j| &H,s |vk,i − vk,j|s &n0,q,s 2−k(k + 1)sq.

Therefore,

1 ≥ 2k min
i=1,...,2k+1

|wk,i − wk,j| &H,s,n0,q (k + 1)sq,

which diverges as k →∞ and we reach a contradiction.

It remains to check (9.8). By Lemma 9.11, it suffices to show that

∞∑
k=0

2k∑
i=1

τs(k, vk,i, vk,i+1)p|vk,i − vk,i+1|s <∞.
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By the Mean Value Theorem,

τs(k, vk,i, vk,i+1) =
|vk,i − vk+1,2i|s + |vk+1,2i − vk,i+1|s − |vk,i − vk,i+1|s

|vk,i − vk,i+1|s

= 2
(k + 2 + n0)sq − (k + 1 + n0)sq

(k + 2 + n0)sq

.n0,s,q
1

k + 1
.

Finally, since sq − p < −1,

∞∑
k=0

2k∑
i=1

τs(k, vk,i, vk,i+1)p|vk,i − vk,i+1|s .n0,s,q

∞∑
k=0

2k

(k + 1)p
(2−k/s(k + 1)q)s

=
∞∑
k=0

(k + 1)sq−p <∞.

Appendix A. Tours on connected, finite simple graphs

A finite simple graph G = (V,E) in a Banach space X is a finite set of points V ⊂ X

(called vertices of G) along with a set E ⊆ {{v, v′} : distinct v, v′ ∈ V } (called edges

of G). We may identify edges {v, v′} in the graph with the (unoriented) line segments

[v, v′] in X. A graph is connected if every pair of vertices in the graph can be joined by a

sequence of edges in the graph. The valence of a vertex v in G is the number of edges in

G that contain v.

Proposition A.1. Let G be a connected, finite simple graph in X. Assume that every

vertex in G has valence at most 2. For any vertex v0 in G and any nondegenerate compact

interval ∆, there exists a collection I of open intervals, whose closures are mutually

disjoint and contained in the interior of ∆, and there exists a continuous map g : ∆→ G

with the following properties.

(1) The endpoints of ∆ are mapped onto v0.

(2) For every vertex v of G, there exists at least one component J of ∆\
⋃
I such that

g(J) = v. Conversely, for every component J of ∆ \
⋃
I, there exists a vertex v

of G such that g(J) = v.

(3) Each interval in I is mapped linearly onto some edge e of G. Conversely, for each

edge e of G, there exist exactly two intervals I ∈ I such that g(I) = e.

(4) For any vertex v in G, there exists a component J of g−1(v) ∩∆ \
⋃
I such that

for any edge e containing v as an endpoint, there exists I ∈ I such that I ∩ J 6= ∅
and g(I) = e.

Proof. If we only desired properties (1)–(3), then we could prove the proposition without

any restriction on the valency of the vertices by simple induction on the number of edges.

The restriction on the valency of the vertices ensures the graph has one of two simple

forms that make it easy to describe maps g satisfying properties (1)–(4). Thus, let G be
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a connected, finite simple graph in X, and assume that every vertex in G has valence at

most 2. The conclusion being trivial otherwise, we may assume that G contains at least

two vertices. There are two possibilities. In each case, we will construct the family I and

the map g, but leave verification of properties (1) through (4) to the reader.

Case 1: Suppose that every vertex of G has valence 2 (i.e. G is a “cycle”). Then we can

find an enumeration {u1, . . . , uk} of the vertices of G so that the edges of G are precisely

{[ui, ui+1] : i = 1, . . . , k}, where we set uk+1 = u1. Without loss of generality, assume that

u1 = v0. Let I = {I1, . . . , I2k} be open intervals, enumerated according to the orientation

of ∆, whose closures are mutually disjoint and contained in the interior of ∆. Then there

exists a continuous, surjective map g : ∆→ G such that

(1) g is linear on each Ii and constant on each component of ∆ \
⋃2k
i=1 Ii;

(2) for each i ∈ {1, . . . , k}, g maps Ii linearly onto [ui, ui+1] and maps the left endpoint

of Ii onto ui;

(3) for each i ∈ {k + 1, . . . , 2k}, g maps Ii linearly onto [ui−k, ui−k+1] and maps the

left endpoint of Ii onto ui−k.

That is, g winds twice around the graph, starting and ending at v0 = u1.

Case 2: Suppose that least one vertex of G has valence 1 (i.e. G is an “arc”). Then

we can find an enumeration {u1, . . . , uk} of the vertices of G so that the edges of G

are precisely {[ui, ui+1] : i = 1, . . . , k − 1}. In this case, u1 and uk have valence 1

and all other vertices have valence 2. Assume that v0 = ul for some 1 ≤ l ≤ k. Let

I = {I1, . . . , I2(k−1)} be open intervals, enumerated according to the orientation of ∆,

whose closures are mutually disjoint and contained in the interior of ∆. Then there exists

a continuous, surjective map g : ∆→ G such that

(1) g is linear on each Ii and constant on each component of ∆ \
⋃2(k−1)
i=1 Ii;

(2) for each 1 ≤ i ≤ l − 1 (if any), g maps Ii linearly onto [ul−i, ul−i+1] and maps the

left endpoint of Ii onto ul−i+1;

(3) for each i ∈ {l, . . . , l+k− 2}, g maps Ii linearly onto [ui−l+1, ui−l+2] and maps the

left endpoint of Ii onto ui−l+1;

(4) for each l+k−1 ≤ i ≤ 2(k−1) (if any), g maps Ii linearly onto [u2k−2+l−i, u2k−1+l−i]

and maps the left endpoint of Ii onto u2k−1+l−i.

That is, g walks along the graph from v0 = ul towards u1, walks from u1 to uk, and walks

from uk back to ul. �

Appendix B. From Lipschitz to Hölder parameterizations

The following method of obtaining Hölder parameterizations from Lipschitz ones is well

known, see e.g. [SS05, Lemma VII.2.8]. We include Lemma B.1 and its proof here to have

a clear statement about the dependence of the Hölder constant of the map f .

Lemma B.1. Let s > 1, M > 0, 0 < ξ1 ≤ ξ2 < 1, α > 0, β > 0, and j0 ∈ Z. Let (X, | · |)
be a Banach space. Suppose that ρj (j ≥ j0) is a sequence of scales and fj : [0,M ] → X

(j ≥ j0) is a sequence of Lipschitz maps satisfying
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(1) ρj0 = 1 and ξ1ρj ≤ ρj+1 ≤ ξ2ρj for all j ≥ j0,

(2) |fj(x)− fj(y)| ≤ Aj|x− y| for all j ≥ j0, where Aj ≤ αρ1−s
j , and

(3) |fj(x)− fj+1(x)| ≤ Bj for all j ≥ j0, where Bj ≤ βρj.

Then fj converges uniformly to a map f : [0,M ]→ X such that

|f(x)− f(y)| ≤ H|x− y|1/s for all x, y ∈ [0,M ],

where H is a finite constant depending only on max(M, 1/M), ξ1, ξ2, α, and β; see (B.7).

Proof. Define f : [0,M ]→ X pointwise by f(x) = fj0(x) +
∑∞

k=j0
(fk+1(x)− fk(x)). Then

f exists and is the uniform limit of the maps fj by (3), because
∑∞

k=j0
Bk <∞. In fact,

for all j ≥ j0 and x ∈ [0,M ],

(B.1) |f(x)− fj(x)| ≤
∞∑
k=j

|fj+1(x)− fj(x)| ≤
∞∑
k=j

βρk ≤
β

1− ξ2

ρj.

Suppose that x, y ∈ [0,M ] with x 6= y. Then there is a unique integer j ≥ j0 such that

(B.2) Mρsj+1 < |x− y| ≤Mρsj .

By the triangle inequality, (2), and (B.1),

|f(x)− f(y)| ≤ |fj(x)− fj(y)|+ |f(x)− fj(x)|+ |f(y)− fj(y)|

≤ αρ1−s
j |x− y|+

2β

1− ξ2

ρj.
(B.3)

By the first inequality in (B.2) and (1), we have

(B.4) ρj <
1

M1/sξ1

|x− y|1/s.

Hence, by the second inequality in (B.2), we have

(B.5) ρ1−s
j |x− y| ≤Mρj <

M

M1/sξ1

|x− y|1/s.

Combining (B.3)–(B.5) yields |f(x)− f(y)| ≤ h|x− y|1/s for all x, y ∈ [0,M ], where

(B.6) h =
1

M1/sξ1

(
αM +

2β

1− ξ2

)
.

If M ≥ 1, then 1/M1/s ≤ 1, while if M ≤ 1, then 1/M1/s ≤ 1/M . Thus, it follows that

|f(x)− f(y)| ≤ H|x− y|1/s for all x, y ∈ [0,M ], where

(B.7) H =
max(1, 1/M)

ξ1

(
αM +

2β

1− ξ2

)
=
α

ξ1

max(1,M) +
2β

ξ1(1− ξ2)
max(1, 1/M)

depends only on max(M, 1/M), ξ1, ξ2, α, and β. �

Remark B.2. Lemma B.1 is often used with geometric scales ρj = ρj (i.e. ξ1 = ξ2 = ρ).

However, separating the parameters ξ1 and ξ2 provides additional flexibility that can make

constructing examples easier; see e.g. §9.5.
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graphs, Astérisque (1991), no. 193, 152. MR 1113517 (92j:42016)

[DS93] Guy David and Stephen Semmes, Analysis of and on uniformly rectifiable sets, Mathematical

Surveys and Monographs, vol. 38, American Mathematical Society, Providence, RI, 1993.

MR 1251061 (94i:28003)
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